
COMP2611 Fall 2015

Memory System

COMP2611: Computer Organization

COMP2611 Fall 2015 Memory System

2 Major Goals

• To introduce the memory hierarchy and the principle
of locality

• To introduce basic cache concepts

• To introduce basic virtual memory concepts

COMP2611 Fall 2015 Memory System

3 Memory Revisit

 RAM (Random Access Memory) includes two types

 DRAM (Dynamic RAM) ― people often refer to it as memory

 SRAM (Static RAM) ― mostly used for cache (explained later)

 From now on, we explicitly distinguish memory and cache

 Memory is

 Storage for instructions and data of an executing program

 Has to be of large capacity and cheap (so as to be affordable)

 DRAM provides this feature

COMP2611 Fall 2015 Memory System

4 Dynamic Random Access Memory (DRAM)

 DRAM

 Consists of bits of data stored in a separate capacitors

 Hold a logical “1” by having capacitor charged, and vice versa

 Capacitors are

 Structurally simple, only one transistor and a one capacitor per bit

 High density with low cost

 Major problem of using capacitors:

 Real-world capacitors are not ideal, hence leak electrons

 Information stored in capacitors eventually fades

 Need to recharge the capacitors periodically to restore the
“values”

 Read operation discharges the electrons: read is destructive

 Because of this refresh requirement, it is called dynamic memory

COMP2611 Fall 2015 Memory System

5 Example: 4x4 DRAM Array

A memory cell.

The first DRAM cell
was invented in 1966
by Robert Dennard, a
researcher at IBM's
Thomas J. Watson
Research Center

Capacitor:

To store the “value”

Transistor:

To enable read/write to
the capacitor

Electrons discharged
upon read

http://upload.wikimedia.org/wikipedia/en/3/3d/Square_array_of_mosfet_cells_read.png

COMP2611 Fall 2015 Memory System

6 Static Random Access Memory (SRAM)

 SRAM is a type of semiconductor memory

 Each cell is constructed using transistors only (i.e. no capacitor)

 Density not as high as DRAM, it is more expensive

 Does not need to be periodically refreshed, the memory retains its
contents as long as power remains applied

 Read is not destructive in SRAM design; that’s why called static

 SRAM SDRAM; SDRAM Synchronous DRAM

http://upload.wikimedia.org/wikipedia/commons/7/77/6t-SRAM-cell.png

COMP2611 Fall 2015 Memory System

7 Access Time: DRAM vs SRAM

DRAM

 Slow; because capacitor charging and discharging times are long

 Can be as long as hundreds of cycles w.r.t. processor’s speed

 Usually used as main memory

SRAM

 Fast; because switching time at transistor level is short

 May take a few cycles to a few tens of cycles, depending on the size

 Mostly used as caches inside the CPU

Before: discussions always assumed that memory access takes one cycle

From now on, this assumption is dropped

 Implication performance of processor looks bad with this reality

 In this chapter, we’ll look into ways to minimize the impact of this

COMP2611 Fall 2015 Memory System

8 Processor-Memory (DRAM) Performance Gap

COMP2611 Fall 2015 Memory System

9 Memory Bottleneck

 DRAM improvement is not keeping up with processor improvement

 Processors are getting much faster than memories over time

 The speed gap is widening!

 Using SRAM?

 Impractical & uneconomical to have a large amount of SRAM
inside the computer

 As a result, memory access can be a bottleneck

 Because processor spends long time waiting for memory access

Solution

Use a memory hierarchy exploiting the principle of locality

COMP2611 Fall 2015 Memory System

10 Principle of Locality

Programs usually access a relatively small portion of their address space
(for instructions or data) at any instant of time

Such execution pattern exhibits two types of localities:

 Temporal locality:

 If an instruction or data item is referenced

 it will tend to be referenced again soon

 e.g. loops in programs contribute to temporal locality

 Spatial locality:

 If an instruction or data item is referenced

 items whose addresses are close by will tend to be referenced soon

 e.g. data arrays, sequential instructions contribute to spatial locality

This property is the KEY to memory hierarchy!

COMP2611 Fall 2015 Memory System

11 Example: identifying temporal and spatial locality

 Summing up 100 values stored in memory:

 addi $s0, $zero, 0 # $s0: accumulator

 addi $s1, $zero, 100 # $s1: counter

L1: lw $t1, 0($s2) # $s2: memory addr

 add $s0, $s0, $t1

 addi $s2, $s2, 4

 subi $s1, $s1, 1

 bne $s1, $zero, L1

 Temporal and spatial locality can be observed in instructions & data

Example: locality during program execution

COMP2611 Fall 2015 Memory System

12

COMP2611 Fall 2015 Memory System

13 Memory Hierarchy

 A memory hierarchy consists of multiple levels of memory

 Users have the illusion of a memory

 as large as the largest level, as fast as the fastest level

 A trade-off between performance and cost

speed

fastest

slowest

cost / bit

highest

lowest

size
CPU

Magnetic Disk

(secondary storage)

Cache

Main memory

(DRAM)

smallest

biggest

.

COMP2611 Fall 2015 Memory System

14

$0.20-$2 5,000,000 – 20,000,000 ns Magnetic disk

$20-$75 50-70ns DRAM

$2000-$5,000 0.5-2.5 ns SRAM

$ per GB in 2008 Typical access time Memory Technology

Memory Hierarchy (2)

In memory hierarchy,

 Different levels of memory use different technologies

 Different technologies give different performance/cost trade-off

 (example will be given later)

Cache was the name chosen to represent the level of the memory
hierarchy between the CPU and the main memory in the first

commercial machine

COMP2611 Fall 2015 Memory System

15 Example with Two Levels of Caches

CPU

Magnetic Disk
(secondary storage)

L1 Cache

(SRAM)

Main memory
(DRAM)

L2 Cache

(SRAM)

32 Kbytes

1 Mbytes

2 Gbytes

160 Gbytes

On-chip

Off-chip

e.g. FSB

(or Front-side Bus)

COMP2611 Fall 2015 Memory System

16 How Does Memory Hierarchy Operate?

Initially,

 Instructions and data are loaded into memory (DRAM) from disk

Upon first access,

 A copy of the referenced instruction or data item is kept in cache

In subsequent accesses,

 First, look for the requested item in the cache

If the item is in the cache, return the item to the CPU

If NOT in the cache, look it up in the memory

 We can say

If not found in this level, look it up at next level until found

Keep (or cache) a copy of the found item at this level after use

COMP2611 Fall 2015 Memory System

17 Why Memory Hierarchy Improves Performance?

Memory hierarchy takes advantage of:

 Temporal locality by keeping more recently accessed data items
closer to the processor

 Increase the chance that the item is found in shorter time

 Spatial locality by moving blocks consisting of multiple contiguous
words in memory to upper levels of the hierarchy

 Increase the chances that the close-by item is found in shorter time

Level in the
memory hierarchy

level 1

level 2

level n

Increasing distance
from the CPU in
access time

.

Size of memory at each level

CPU

(upper)

(lower)

COMP2611 Fall 2015 Memory System

18 Data Transfer Between Levels

 A level closer to the processor is a
subset of any level further away

 Data are copied in blocks (block
size is usually 32 bytes or 64 bytes)
between only two adjacent levels
at a time

 Hit: when the data item requested
by the processor appears in some
block in the upper level

 Miss: when the data item
requested by the processor is not
in the upper level; data transfer
occurs from the lower level to the
upper level

P r o c e s s o r

D a t a a r e t r a n s f e r r e d

COMP2611 Fall 2015 Memory System

19 Performance Measures

 Hit rate (or hit ratio):

Fraction of memory accesses found in the upper level

 Miss rate: 1 - hit rate

 Cache hit time:

 = time to determine miss or hit + time to access the cache

 Cache miss penalty:

 = time to bring a block from lower level to upper level

 Hit time << Miss penalty

COMP2611 Fall 2015 Memory System

20 Example with One Level of Cache

Example (assume everything else is ideal)

 3-cycle cache access latency

 100-cycle memory access latency

 Assuming 0-cycle for bus and cache lookup

 Data: 70% of the times in cache

Average memory latency

= 0.7 * 3 + 0.3 * (3 + 100)

= 3 + 0.3 * 100

= 33 cycles

Without cache, it is 100 cycles !!!

With caching, performance is better we are closer to the ideal case!

CPU

Memory

bus

Cache

COMP2611 Fall 2015 Memory System

21 Example with Two Levels of Caches

Example

 3-cycle L1 latency

 12-cycle L2 latency

 100-cycle memory latency

 Assuming 0-cycle for bus and cache lookup

 Data: 70% in L1

 Data: 60% in L2

Average memory latency

= 3 + 0.3 * 12 + 0.3 * 0.4 * 100

= 3 + 3.6 + 12.0

= 18.6 cycles

(better than one level)

CPU

Memory

bus

L1 Cache

L2 Cache

0.7 x 3

0.3 x 0.6 (12+ 3)

0.3 x 0.4 (100+ 12+ 3)

= 0.7 x 3 + 0.3 x 0.6 (12+3) + 0.3 x 0.4 (100+ 12+ 3)

COMP2611 Fall 2015 Memory System

22 Cache Performance

Average memory access latency = hit time + miss rate * miss penalty

For a configuration with a single level of cache, average memory latency

= hit time + miss ratio * miss penalty

= hit time + (1 - hit ratio) * miss penalty

For two levels of caches, average memory latency

= hit time1 + miss ratio1 * miss penalty1

= hit time1 + miss ratio1 * (hit time2 + miss ratio2 * miss penalty2)

= hit time1 +

 miss ratio1 * hit time2 +

 miss ratio1 * miss ratio2 * miss penalty2

The same idea can be extended to multiple levels of caches

COMP2611 Fall 2015 Memory System

23 Example

Suppose 1000 memory references

40 misses in the 1st-level cache and 20 misses in the 2nd-level cache

Hit time1 = 3 cycles;

Hit time2 = 12 cycles;

Memory latency = 100 cycles

 Miss rate1 = 40 / 1000 = 0.04 or 4%

 Miss rate2 = 20 / 40 = 0.5 or 50%

 Miss penalty2 = memory latency

 Average memory access latency

 = 3 + 0.04 * (12 + 0.5 * 100)

 = 3 + 0.04 * 12 + 0.04 * 0.5 * 100

 = 5.48 cycles

COMP2611 Fall 2015 Memory System

24

Cache

COMP2611 Fall 2015 Memory System

25 Issues to Consider

Block placement:

 Where is a block placed in the cache?

Block identification:

 How can a block be found if it is in the cache?

Block replacement:

 Upon miss, how the victim block in the cache is selected for
replacement?

Write strategy:

 When a write occurs, is the information written only to the cache?

COMP2611 Fall 2015 Memory System

26 Implementation of Caches

Cache is organized as an array of cache blocks

Each memory location is mapped to ONE location in the cache

Cache block

 A minimum unit of information that can be present in cache or not

Cache block sizes

 Commonly used today: 32 bytes and 64 bytes

Three basic organizations

 Direct-mapped (one memory block to one possible cache block)

 Set-associative (one memory block to one set of possible cache
blocks)

 Fully-associative (one memory block to all possible cache blocks)

Revisit Memory Address

COMP2611 Fall 2015 Memory System

27

00 Set 0

01 Set 1

10 Set 2

11 Set 3

Block 0

Block 1

Block 2

Block 7

Method 1:
cache_location = block_address MOD
number_of_blocks_in_cache

Method 2: if m cache sets, lower m bits of block address
01010

COMP2611 Fall 2015 Memory System

28 Direct Mapped: A Simple Block Placement Scheme

A common mapping strategy:

 cache_location = block_address MOD number_of_blocks_in_cache

 If the number of cache blocks (N) is a power of 2; N = 2m

 Long-latency MOD operation can be avoided

 Instead, cache_location = the low-order m bits of block address

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
 0

 0

0
 0

 1

0
 1

 0

0
 1

 1

1
 0

 0

1
 0

 1

1
 1

 0

1
 1

 1

cache

memory

block address

cache location
Only one memory block can
reside in a given cache location;

that’s why we also call “mapping
memory block to cache location”

0 1 2 3 4 5 6 7 8

COMP2611 Fall 2015 Memory System

29 Example

Consider block address stream below (from left to right):

00101102, 00110102, 00101102, 00101102, 00100002, 00000112, 00100002, …

 Let’s call cache location “set”

 Block address mapping to the frames:

3

set 0

set 1

set 2

set 3 3

3 3

set 4

set 5

set 6

set 7

0010110

0011010

0010000

0000011

M H M M M H H

8-entry cache
M: cache miss

H: cache hit

COMP2611 Fall 2015 Memory System

30 Mapping an Address to a Multiword Cache Block

Consider a direct-mapped cache with

 8 entries (or cache blocks) and a block size of 32 bytes

 What block number does byte address 1200 map to?

 First, find the block address, which equals to

 i.e. block address for byte address 1200 = floor(1200/32) = 37

 The block address is the block containing all addresses between

 and

 Next, block location = (block address) MOD (number of cache blocks)

 i.e. map to cache block number (37 MOD 8) = 5

blockbytes per

ssbyte addre

blockper bytes
blockper bytes

address byte

1) block per (bytes block per bytes
blockper bytes

address byte
-

e.g. Block 0 contains byte 0 to byte 31

Block 1 contains byte 32 to byte 63

COMP2611 Fall 2015 Memory System

31 Explanation

Example: lw $t0, 1200($zero)

 The memory address generated by CPU upon execution = 1200

 1200 will be first sent to the cache to look for the data

 By the mapping method discussed, the data block will be in entry 5

32 bytes

…

Main memory

1152
1184
1216

Block 37

32 bytes

Block 0

Block 7

Cache

…
Block 5

COMP2611 Fall 2015 Memory System

32 Example: Accessing a Cache

Consider a direct-mapped cache with

 8 cache frames and a block size of 32 bytes

 Miss rate = (# of misses) / (# total memory accesses) = 5 / 8

(00100102 mod 8) = 0102 Miss 0010 0102 0010 0100 00012

(00100002 mod 8) = 0002 Hit 0010 0002 0010 0001 00002

(00000112 mod 8) = 0112 Miss 0000 0112 0000 0110 00002

(00100002 mod 8) = 0002 Miss 0010 0002 0010 0000 10002

(00101102 mod 8) = 1102 Hit 0010 1102 0010 1100 00102

(00101102 mod 8) = 1102 Hit 0010 1102 0010 1100 01002

(00110102 mod 8) = 0102 Miss 0011 0102 0011 0100 00002

(00101102 mod 8) = 1102 Miss 0010 1102 0010 1100 00102

Assigned cache block

(where found or placed)

Hit or miss

in cache

Block
address

Memory (byte) address

generated by CPU

COMP2611 Fall 2015 Memory System

33 Deciding Number of Sets in Direct-Mapped Cache

Example: Direct-mapped (DM) cache

 Cache size = 16 Kbytes

 Cache block size = 32 bytes

 N = # of blocks in cache

 # of cache sets = ? (in DM, N = Sets)

 # of cache sets = 16K / 32

 = 214 / 25

 = 29

 = 512

 If the answer is 2m, it implies that we need rightmost m
bits of the block address to form the index (cache
location) into the cache; in this example, we need 9 bits

32 bytes

Cache

…

#
 o

f
c
a

c
h

e
 s

e
ts

COMP2611 Fall 2015 Memory System

34 Miss Rate vs. Block Size

 Bigger cache block size, less number of cache blocks; and vice versa

 Given cache size is fixed, varying cache block size changes miss rate

1 K B 1 6 K B 2 5 6 K B 8 K B 6 4 K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
 i s

 s
 r

 a
 t e

6 4 1 6 4

B l o c k s i z e (b y t e s)

COMP2611 Fall 2015 Memory System

35 Disadvantage of DM Cache

Blocks mapped to same cache frame can’t be present simultaneously

Example:

 # of cache sets = 8

 Consider block access sequence: 1000112, 0010112, 1000112

 Block 1000112 & 0010112 are mapped to the same cache set 0112

 Arrival of block 0010112 will kick (i.e. replace) 1000112 out

 i.e. both blocks can’t be present simultaneously

 Subsequent access to 1000112 will not hit but miss

 Less performance improvement with such cache conflict

Question:

 Can we alleviate this conflict problem to increase the cache hit rate?

Demo of DM Disadvantage

COMP2611 Fall 2015 Memory System

36

100011

001011

COMP2611 Fall 2015 Memory System

37 Other Block Placement Schemes

Fully associative (FA)

 Each block can be placed anywhere in the cache

 Advantage:

 No cache conflict better cache hit rate than direct mapped

 But, still see misses due to size (capacity miss)

 Disadvantage:

 Costly (hardware and time) to search for a block in the cache

Set associative (SA)

 Each block can be placed in a certain number of cache locations

 A good compromise between direct mapped & fully associative

 In terms of cost and hit rate

COMP2611 Fall 2015 Memory System

38 Fully Associative vs. Set Associative

 Highlighted locations are placement candidates for memory block X

 Assume both FA and SA have same number of cache blocks

Fully associative
cache

cache

block number
7 6 5 4 3 2 1 0

2-way set associative

cache

cache

block number
7 6 5 4 3 2 1 0

Memory

block X

3 2 1 0 set number

COMP2611 Fall 2015 Memory System

39 Deciding Number of Sets in Set-Associate Cache

Example: 2-way set-associative (SA) cache

 Associativity = 2

 Cache size = 16Kbytes

 Cache block size = 32bytes

 N = # of blocks in cache

 # of cache sets = ? (in SA, N Sets)

 N = 16K / 32 = 512

 # of cache sets = N / 2

 = 256

In general, for a m-way set-associative cache,

 # of cache sets = cache size / cache block size / m

32 bytes

Cache

#
 o

f

c
a

c
h

e
 s

e
ts

… …

32 bytes

COMP2611 Fall 2015 Memory System

40 Deciding Number of Sets in Fully-Associate Cache

Fully-associative (FA) cache is a special case of set-associative cache

 i.e. there is only ONE set in FA since a block can be placed anywhere

Example:

 Cache size = 16Kbytes

 Cache block size = 32bytes

 N = # of blocks in cache = 16K / 32 = 512 (still the same calculation)

 # of cache sets = 1

Block Placement Example

COMP2611 Fall 2015 Memory System

41

memory

cache

block, i.e. 32 bytes

Fully

Fully associative
Directly mapped
Set associative

set

block#
#sets

cache_location = block_address MOD
number_of_sets_in_cache

COMP2611 Fall 2015 Memory System

42 Placement for N-way Set-Associative Cache

An N-way set associative cache

 Consists of a number of sets, each of which consists of N blocks

Mapping strategy:

 number_of_sets_in_cache = cache size / cache block size / N

 cache_location = block_address MOD number_of_sets_in_cache

Placement of the memory block

 Can be in any “way” within the set

 e.g. if 4-way, there are 4 feasible locations to cache the block

 (how to choose the location to place it will be answered later)

Special cases:

 A direct mapped cache as a 1-way set associative cache

 A fully associative cache with M blocks an M-way set associative

COMP2611 Fall 2015 Memory System

43 Possible Associativity Structures

Example:

 Cache Size = 256 bytes

 = 64 words

 Block Size = 32 bytes

 = 8 words

 Number of blocks = 8

 Increase in degree of associativity

Advantage: Decrease in miss rate

Disadvantage: Increase in hit time (due to longer search time)

One-way set associative
(direct mapped)

Two-way set associative

Four-way set associative

Eight-way set associative (fully associative)

T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a

T a g D a t a T a g D a t a T a g D a t a T a g D a t a S e t

0

1

T a g D a t a B l o c k

0

7

1

2

3

4

5

6

T a g D a t a S e t

0

1

2

3

T a g D a t a

COMP2611 Fall 2015 Memory System

44 Block Identification in DM

 Assume a DM with 1024 cache sets

 Assume the block size is 32 bytes

 Each cache location can contain a
block from a number of different
memory locations

 Question: how do we know which
block is actually in the location, i.e.
how to tell hit or miss?

 A tag is used to store the address
information

 The tag needs only to contain
those high-order bits that are not
used as an index into the cache

 A valid bit is needed to indicate
whether a cache block contains
valid information

Address (showing bit positions)

1 7 1 0

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

1 7 3 2

31 30……15 14….5 4...0
byte
offset

Tag
index

index valid tag data

data hit

this symbol means

“compare”

COMP2611 Fall 2015 Memory System

45 Example: Bits in a Cache

 A DM cache with 16KB of data and 8-word (25 bytes) blocks

 Assume a 32-bit address

 How many total bits are required?

16KB = 4K words = 212 words

Block size of 8 words 29 blocks

Each block has 8 x 32 = 256 bits of data

A tag has 32 - 9 - 5 = 18 bits

And, 1 valid bit

Total bits per entry = (256 + 18 + 1)

 Total cache size

 29 x (256 + 18 + 1) = 29 x 275 = 140800 = 137.5 Kbits

 How much overhead is needed?

COMP2611 Fall 2015 Memory System

46 Block Identification in N-way Set Associative Cache

 Parallel lookup for the requested address in the cache set

Questions to answer:

 Which cache set?

 i.e. which address bits are used?

Memory address

31 30 …… 13 12 …. 5 4 ...0
byte
offset

1 9 8

0

1

2

2 5 3

2 5 4

2 5 5

3 2 2 2

4 - t o - 1 m u l t i p l e x o r

H i t D a t a

index V tag data tag data V tag data V tag data V

COMP2611 Fall 2015 Memory System

47 Block Identification in N-way Set Associative Cache

Recall the N-way SA’s mapping strategy:

 number_of_sets_in_cache = cache size / cache block size / N

 cache_location = block_address MOD number_of_sets_in_cache

If number_of_sets_in_cache = 2m,

 Use next m address bits after the byte offset to serve as the index

Example:

 16KB cache, 4 ways, 32-byte cache block

 number_of_sets_in_cache = 16K / 32 / 4 = 128 = 27

 Byte offset = 5 (because 32 = 25)

 So, bit 0~4 are for byte offset, bit 5~11 are for index, the rest is tag

Memory address

31 30 …… 12 11 …. 5 4 ...0

index tag byte
offset

COMP2611 Fall 2015 Memory System

48 Handling Cache Misses

Upon a memory access by CPU, a request is sent to the first level cache

If the cache reports a hit

 CPU continues using the data from cache as if nothing had happened

If the cache reposts a miss, some extra work is needed

 A separate controller initiates a request to refill the cache

 This request is sent to the next level cache or memory

 (Keep going to next level until data are found)

 During the process of refilling, CPU is stalled

 Stall entire CPU stops operating until the 1st-level cache is filled

 Unlike interrupts, stall does not need saving the state of all registers

COMP2611 Fall 2015 Memory System

49 Flow of Handling Cache Accesses

CPU

Magnetic Disk
(secondary storage)

L1

Cache

Main memory

memory request return data

CPU

Magnetic Disk
(secondary storage)

L1

Cache

Main memory

memory request return data

return data memory request

Cache hit Cache Miss

COMP2611 Fall 2015 Memory System

50 Caching the Instruction

Instructions are also stored in memory

 Upon execution of a program,

 CPU fetches instructions from memory

 To avoid long instruction fetch,

 same caching idea can be applied to
instructions

 An example of instruction cache in a
two-level cache hierarchy is shown in
the figure

CPU

Magnetic Disk
(secondary storage)

L1 Data

Cache

Main memory

L2 Cache

L1 Instruction

Cache

COMP2611 Fall 2015 Memory System

51 Example: Steps on an Instruction Cache Miss

1. Send the PC value to the memory

2. Instruct main memory to perform a read and wait for completion

3. Write the (instruction) cache entry, i.e.

 Put the data from memory in the data portion of the entry

 Write the upper bits of the PC into the tag field

 Turn the valid bit on

4. Restart the instruction execution at the first step

 Which will re-fetch the instruction, this time finding it in the cache

 Control of the cache on an instruction access is essentially identical:

 On a miss, simply stall the CPU until the memory responds with instr.

Real Stuff

COMP2611 Fall 2015 Memory System

52

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

COMP2611 Fall 2015 Memory System

53 Block Replacement

 When a cache miss occurs, we must decide which block to replace

 Why block replacement is needed?

Block replacement for

 Direct mapped: only one candidate (trivial case)

 Fully associative: all blocks are candidates

 Set associative: only blocks within a particular set are candidates

Two primary replacement policies for associative caches

 Random:

 Candidate blocks are randomly selected to spread allocation uniformly

 Least recently used (LRU):

 The candidate is the block that has not been used for the longest time

 Costly to implement for a degree of associativity higher than 2 or 4

COMP2611 Fall 2015 Memory System

54 Example of LRU Replacement Policy

Assume the cache is 4-way set-associative

Consider block address stream below (from left to right):

 00110102, 00100102, 01100102, 10000102, 00010102, 00100102, 01000102

 All these block addresses mapped to same set “010”

 Question: which blocks remain in the set at the end?

 Answer: (just look at the tag)

 0011 0010 0110 1000 0001 0010 0100

—

—

—

—

MRU

LRU

0011

—

—

—

miss

0010

—

—

0011

miss

0010

—

0011

0110

miss

0010

0011

0110

1000

miss

0010

0001

0110

1000

hit

0010

0001

0110

1000

miss

replace 0011

0010

0001

0100

1000

miss

replace 0110

COMP2611 Fall 2015 Memory System

55 LRU Replacement Policy

Upon miss:

 Replace the victim from the LRU position with miss address

 Move the miss address to the MRU position

 Heuristic: the LRU is not referenced for a long time, good candidate

Upon hit:

 Move the hit address to the MRU position

 Then, pack the rest

 Heuristic: the one just got hit should be the last one to be replaced

COMP2611 Fall 2015 Memory System

56 Dealing with Dirty Data

Definition

 If the content of a cache entry is modified, it is considered as dirty

If a line is dirty, what should we do upon block replacement?

 It is a question about how we update the memory

Two options:

1. Write-back

2. Write-through

COMP2611 Fall 2015 Memory System

57 Write-Back Strategy

Upon write access by CPU,

 The information is written only to the block in the cache, not memory

When the block becomes the candidate of replacement

 The dirty block is written back to the main memory

Advantages:

 CPU can write individual words at the rate of the cache (not memory)

 Multiple writes to a block are merged into one write to main memory

 Since the entire block is written, system can make effective use of a
high bandwidth transfer

 As CPU speed increases at a rate faster than DRAM-based memory,
more and more caches use the write-back strategy

COMP2611 Fall 2015 Memory System

58 Write-Through Strategy

Upon all memory accesses,

 The information is written to both the block in the cache and memory

 (memory is always up-to-date)

Advantages:

 Handling of misses is simpler and cheaper

Because they do not require a block to be written back to memory

 Write-through is easier to implement than write-back

Disdvantages:

 Multiple writes to the same location consume memory bandwidth

Waste of bandwidth as compared to write-back strategy

Potentially slow down the reads to memory

Notes: A write buffer is needed for a high-speed system if write-through strategy is used

A write buffer is a queue to hold data while data are waiting to be written to memory

COMP2611 Fall 2015 Memory System

59

Write to block[4]

Write-Back vs Write-Through

CPU

L1

Cache

Main memory

Write to block[0]

Write-Back Write-Through

Upon replacement, write

block[0~31] to memory

in ONE burst

CPU

L1

Cache

Main memory

Write to block[4]

Write to block[0]

Upon each write, update

both cache and memory

