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2 Major Goals 

• To introduce the memory hierarchy and the principle 
of locality 

• To introduce basic cache concepts 

• To introduce basic virtual memory concepts  
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3 Memory Revisit 

 RAM (Random Access Memory) includes two types  

 DRAM (Dynamic RAM) ― people often refer to it as memory  

 SRAM (Static RAM) ― mostly used for cache (explained later) 

 

 From now on, we explicitly distinguish memory and cache 

 

 Memory is 

 Storage for instructions and data of an executing program 

 Has to be of large capacity and cheap (so as to be affordable) 

 DRAM provides this feature 
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4 Dynamic Random Access Memory (DRAM) 

 DRAM 

 Consists of bits of data stored in a separate capacitors  

 Hold a logical “1” by having capacitor charged, and vice versa 
 

 Capacitors are  

 Structurally simple, only one transistor and a one capacitor per bit  

 High density with low cost 
 

 Major problem of using capacitors: 

 Real-world capacitors are not ideal, hence leak electrons 

 Information stored in capacitors eventually fades 

 Need to recharge the capacitors periodically to restore the 
“values” 

 Read operation discharges the electrons: read is destructive 

 

 Because of this refresh requirement, it is called dynamic memory 



COMP2611 Fall 2015 Memory System 

5 Example: 4x4 DRAM Array 

A memory cell. 

The first DRAM cell 
was invented in 1966 
by Robert Dennard, a 
researcher at IBM's 
Thomas J. Watson 
Research Center  

Capacitor: 

To store the “value”  

Transistor: 

To enable read/write to 
the capacitor  

Electrons discharged 
upon read  

http://upload.wikimedia.org/wikipedia/en/3/3d/Square_array_of_mosfet_cells_read.png
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6 Static Random Access Memory (SRAM) 

 SRAM is a type of semiconductor memory 

 Each cell is constructed using transistors only (i.e. no capacitor) 

 Density not as high as DRAM, it is more expensive 

 Does not need to be periodically refreshed, the memory retains its 
contents as long as power remains applied 

 Read is not destructive in SRAM design; that’s why called static 

 

 

 

 

 

 
 

 

 

 
 

 

 SRAM  SDRAM; SDRAM  Synchronous DRAM 

http://upload.wikimedia.org/wikipedia/commons/7/77/6t-SRAM-cell.png
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7 Access Time: DRAM vs SRAM 

DRAM 

 Slow; because capacitor charging and discharging times are long 

 Can be as long as hundreds of cycles w.r.t. processor’s speed 

 Usually used as main memory 

 

SRAM 

 Fast; because switching time at transistor level is short 

 May take a few cycles to a few tens of cycles, depending on the size 

 Mostly used as caches inside the CPU 

 

Before: discussions always assumed that memory access takes one cycle 

From now on, this assumption is dropped 

 Implication  performance of processor looks bad with this reality 

 

 In this chapter, we’ll look into ways to minimize the impact of this 
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8 Processor-Memory (DRAM) Performance Gap 
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9 Memory Bottleneck 

 DRAM improvement is not keeping up with processor improvement 

 Processors are getting much faster than memories over time 

 The speed gap is widening! 

 

 Using SRAM? 

 Impractical & uneconomical to have a large amount of SRAM 
inside the computer 

 

 As a result, memory access can be a bottleneck  

 Because processor spends long time waiting for memory access 

Solution 

 

Use a memory hierarchy exploiting the principle of locality 
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10 Principle of Locality 

 

Programs usually access a relatively small portion of their address space 
(for instructions or data) at any instant of time 

 

 

Such execution pattern exhibits two types of localities: 

 Temporal locality: 

 If an instruction or data item is referenced 

  it will tend to be referenced again soon 

 e.g. loops in programs contribute to temporal locality 

 Spatial locality: 

 If an instruction or data item is referenced 

  items whose addresses are close by will tend to be referenced soon 

 e.g. data arrays, sequential instructions contribute to spatial locality 

 

This property is the KEY to memory hierarchy! 
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11 Example: identifying temporal and spatial locality 

 Summing up 100 values stored in memory: 
 

     addi   $s0, $zero, 0     # $s0: accumulator 

     addi   $s1, $zero, 100   # $s1: counter 

L1:  lw     $t1, 0($s2)       # $s2: memory addr 

     add    $s0, $s0, $t1 

     addi   $s2, $s2, 4 

     subi   $s1, $s1, 1 

     bne    $s1, $zero, L1 

 

 Temporal and spatial locality can be observed in instructions & data 

 



Example: locality during program execution 
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12 
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13 Memory Hierarchy 

 A memory hierarchy consists of multiple levels of memory 

 Users have the illusion of a memory  

 as large as the largest level, as fast as the fastest level 

 A trade-off between performance and cost 

 

 

 

 

 

 

 

 

 

speed 

fastest 

slowest 

cost / bit 

highest 

lowest 

size 
CPU 

Magnetic Disk 

(secondary storage) 

Cache 

Main memory 

(DRAM) 

smallest 

biggest 

. . . . . 
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14 

$0.20-$2 5,000,000 – 20,000,000 ns Magnetic disk 

$20-$75 50-70ns DRAM 

$2000-$5,000 0.5-2.5 ns SRAM 

$ per GB in 2008  Typical access time Memory Technology 

Memory Hierarchy (2) 

 

 

 

 

 

In memory hierarchy, 

 Different levels of memory use different technologies 

 Different technologies give different performance/cost trade-off 

 (example will be given later) 

 

 

Cache was the name chosen to represent the level of the memory 
hierarchy between the CPU and the main memory in the first 

commercial machine 
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15 Example with Two Levels of Caches 

 

 

 

 

 

 

 

 

CPU 

Magnetic Disk 
(secondary storage) 

L1 Cache 

(SRAM) 

Main memory 
(DRAM) 

L2 Cache 

(SRAM) 

32 Kbytes 

1 Mbytes 

2 Gbytes 

160 Gbytes 

On-chip 

Off-chip 

e.g. FSB 

(or Front-side Bus) 
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16 How Does Memory Hierarchy Operate? 

Initially, 

 Instructions and data are loaded into memory (DRAM) from disk 

 

Upon first access, 

 A copy of the referenced instruction or data item is kept in cache 

 

In subsequent accesses, 

 First, look for the requested item in the cache 

If the item is in the cache, return the item to the CPU 

If NOT in the cache, look it up in the memory 

 We can say 

If not found in this level, look it up at next level until found 

Keep (or cache) a copy of the found item at this level after use 
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17 Why Memory Hierarchy Improves Performance? 

Memory hierarchy takes advantage of: 

 Temporal locality by keeping more recently accessed data items 
closer to the processor 

 Increase the chance that the item is found in shorter time 
 

 Spatial locality by moving blocks consisting of multiple contiguous 
words in memory to upper levels of the hierarchy 

 Increase the chances that the close-by item is found in shorter time 

 

 

 

Level in the 
memory hierarchy 

level 1 

level 2 

level n 

Increasing distance 
from the CPU in 
access time 

. . . . . 

Size of memory at each level 

CPU 

(upper) 

(lower) 
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18 Data Transfer Between Levels 

 A level closer to the processor is a 
subset of any level further away 

 

 Data are copied in blocks (block 
size is usually 32 bytes or 64 bytes) 
between only two adjacent levels 
at a time 

 

 Hit: when the data item requested 
by the processor appears in some 
block in the upper level 

 

 Miss: when the data item 
requested by the processor is not 
in the upper level; data transfer 
occurs from the lower level to the 
upper level 

 

P r o c e s s o r 

D a t a   a r e   t r a n s f e r r e d 
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19 Performance Measures 

 Hit rate (or hit ratio):  

Fraction of memory accesses found in the upper level 

 Miss rate:  1 - hit rate 

 

 Cache hit time: 

 =  time to determine miss or hit  +  time to access the cache 

 

 Cache miss penalty: 

 =  time to bring a block from lower level to upper level 

  

 Hit time << Miss penalty 
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20 Example with One Level of Cache 

Example (assume everything else is ideal) 

 3-cycle cache access latency 

 100-cycle memory access latency 

 Assuming 0-cycle for bus and cache lookup 

 Data: 70% of the times in cache 

 

Average memory latency 

= 0.7 * 3 + 0.3 * (3 + 100) 

= 3 + 0.3 * 100 

= 33 cycles 

 

 

Without cache, it is 100 cycles !!! 

With caching, performance is better  we are closer to the ideal case! 

 

CPU 

Memory 

bus 

Cache 
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21 Example with Two Levels of Caches 

Example 

 3-cycle L1 latency 

 12-cycle L2 latency 

 100-cycle memory latency 

 Assuming 0-cycle for bus and cache lookup 

 Data: 70% in  L1 

 Data: 60% in L2 

 

Average memory latency 

= 3 + 0.3 * 12 + 0.3 * 0.4 * 100 

= 3 + 3.6 + 12.0 

= 18.6 cycles 

(better than one level) 

 

CPU 

Memory 

bus 

L1 Cache 

L2 Cache 

0.7 x 3 

0.3 x 0.6 (12+ 3) 

0.3 x 0.4 (100+ 12+ 3) 

= 0.7 x 3 + 0.3 x 0.6 (12+3) + 0.3 x 0.4 (100+ 12+ 3) 
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22 Cache Performance 

 

Average memory access latency = hit time + miss rate * miss penalty 

 

For a configuration with a single level of cache, average memory latency 

= hit time + miss ratio * miss penalty 

= hit time + (1 - hit ratio) * miss penalty 
 

For two levels of caches, average memory latency 

= hit time1 + miss ratio1 * miss penalty1 

= hit time1 + miss ratio1 * (hit time2 + miss ratio2 * miss penalty2) 

= hit time1 +  

 miss ratio1 * hit time2 +  

 miss ratio1 * miss ratio2 * miss penalty2 

 

The same idea can be extended to multiple levels of caches 
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23 Example 

Suppose 1000 memory references 

40 misses in the 1st-level cache and 20 misses in the 2nd-level cache 

Hit time1 = 3 cycles;  

Hit time2 = 12 cycles; 

Memory latency = 100 cycles 

 

 Miss rate1 = 40 / 1000 = 0.04 or 4% 

 Miss rate2 = 20 / 40 = 0.5 or 50% 

 Miss penalty2 = memory latency 

 Average memory access latency 

 = 3 + 0.04 * (12 + 0.5 * 100) 

 = 3 + 0.04 * 12 + 0.04 * 0.5 * 100 

 = 5.48 cycles 
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24 

Cache 
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25 Issues to Consider 

Block placement: 

 Where is a block placed in the cache? 

 

Block identification: 

 How can a block be found if it is in the cache? 

 

Block replacement: 

 Upon miss, how the victim block in the cache is selected for 
replacement? 

 

Write strategy: 

 When a write occurs, is the information written only to the cache? 
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26 Implementation of Caches 

Cache is organized as an array of cache blocks 

Each memory location is mapped to ONE location in the cache 

 

Cache block 

 A minimum unit of information that can be present in cache or not 

 

Cache block sizes 

 Commonly used today: 32 bytes and 64 bytes 

 

Three basic organizations 

 Direct-mapped (one memory block to one possible cache block) 

 Set-associative (one memory block to one set of possible cache 
blocks) 

 Fully-associative (one memory block to all possible cache blocks) 

 



Revisit Memory Address 
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27 

00 Set 0 

01 Set 1 

10 Set 2 

11 Set 3 

Block 0 

Block 1 

Block 2 

Block 7 

Method 1: 
cache_location = block_address MOD 
number_of_blocks_in_cache 
 
Method 2: if m cache sets, lower m bits of block address 
01010 
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28 Direct Mapped: A Simple Block Placement Scheme 

A common mapping strategy: 

 cache_location = block_address MOD number_of_blocks_in_cache 
 

 If the number of cache blocks (N) is a power of 2; N = 2m 

 Long-latency MOD operation can be avoided 

 Instead, cache_location = the low-order m bits of block address 

 

 

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 

0
 0

 0
 

0
 0

 1
 

0
 1

 0
 

0
 1

 1
 

1
 0

 0
 

1
 0

 1
 

1
 1

 0
 

1
 1

 1
 

cache 

memory 

block address 

cache location 
Only one memory block can 
reside in a given cache location; 

that’s why we also call “mapping 
memory block to cache location” 

0 1 2 3 4 5 6 7 8  
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29 Example 

Consider block address stream below (from left to right): 

00101102, 00110102, 00101102, 00101102, 00100002, 00000112, 00100002, … 

 

 Let’s call cache location “set” 

 Block address mapping to the frames: 

 

3 

set 0 

set 1 

set 2 

set 3 3 

3 3 

set 4 

set 5 

set 6 

set 7 

0010110 

0011010 

0010000 

0000011 

M H M M M H H 

8-entry cache 
M: cache miss 

H: cache hit 
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30 Mapping an Address to a Multiword Cache Block 

Consider a direct-mapped cache with 

 8 entries (or cache blocks) and a block size of 32 bytes 

 What block number does byte address 1200 map to? 
 

 First, find the block address, which equals to 

 

 i.e. block address for byte address 1200 = floor(1200/32) = 37  

 The block address is the block containing all addresses between 
 

                                               and 

 

 

 

 Next, block location = (block address) MOD (number of cache blocks) 

 i.e. map to cache block number (37 MOD 8) = 5 

blockbytes per 

ssbyte addre

blockper    bytes
blockper    bytes

address  byte









1)  block  per    (bytes block per    bytes
blockper    bytes

address  byte
-









e.g. Block 0 contains byte 0 to byte 31 

Block 1 contains byte 32 to byte 63 
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31 Explanation 

Example: lw $t0, 1200($zero) 

 The memory address generated by CPU upon execution = 1200 

 1200 will be first sent to the cache to look for the data 

 By the mapping method discussed, the data block will be in entry 5 

 

32 bytes 

… 

Main memory 

1152 
1184 
1216 

Block 37 

32 bytes 

Block 0 

Block 7 

Cache 

… 
Block 5 
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32 Example: Accessing a Cache 

Consider a direct-mapped cache with 

 8 cache frames and a block size of 32 bytes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Miss rate = (# of misses) / (# total memory accesses) =  5 / 8 

(00100102 mod 8) = 0102 Miss 0010 0102 0010 0100 00012 

(00100002 mod 8) = 0002 Hit 0010 0002 0010 0001 00002 

(00000112 mod 8) = 0112 Miss 0000 0112 0000 0110 00002 

(00100002 mod 8) = 0002 Miss 0010 0002 0010 0000 10002 

(00101102 mod 8) = 1102 Hit 0010 1102 0010 1100 00102 

(00101102 mod 8) = 1102 Hit 0010 1102 0010 1100 01002 

(00110102 mod 8) = 0102 Miss 0011 0102 0011 0100 00002 

(00101102 mod 8) = 1102 Miss 0010 1102 0010 1100 00102 

Assigned cache block 

(where found or placed) 

Hit or miss  

in cache 

Block 
address 

Memory (byte) address 

generated by CPU 
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33 Deciding Number of Sets in Direct-Mapped Cache 

Example: Direct-mapped (DM) cache 

 Cache size = 16 Kbytes 

 Cache block size = 32 bytes 

 N = # of blocks in cache 

 # of cache sets = ? (in DM, N = Sets) 

 

 # of cache sets = 16K / 32 

      = 214 / 25 

      = 29 

      = 512  

 

 

 If the answer is 2m, it implies that we need rightmost m 
bits of the block address to form the index (cache 
location) into the cache; in this example, we need 9 bits 

32 bytes 

Cache 

… 

#
 o

f 
c
a

c
h

e
 s

e
ts
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34 Miss Rate vs. Block Size 

 Bigger cache block size, less number of cache blocks; and vice versa 

 Given cache size is fixed, varying cache block size changes miss rate 

1   K B 1 6   K B 2 5 6   K B 8   K B 6 4   K B 

2 5 6 

4 0 % 

3 5 % 

3 0 % 

2 5 % 

2 0 % 

1 5 % 

1 0 % 

5 % 

0 % 

M
 i s

 s
   r

 a
 t e

 

6 4 1 6 4 

B l o c k   s i z e   ( b y t e s ) 
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35 Disadvantage of DM Cache 

Blocks mapped to same cache frame can’t be present simultaneously 

 

Example: 

 # of cache sets = 8 

 Consider block access sequence: 1000112, 0010112, 1000112 

 Block 1000112 & 0010112 are mapped to the same cache set 0112 

 Arrival of block 0010112 will kick (i.e. replace) 1000112 out 

 i.e. both blocks can’t be present simultaneously 

 Subsequent access to 1000112 will not hit but miss 

 Less performance improvement with such cache conflict 

 

Question: 

 Can we alleviate this conflict problem to increase the cache hit rate? 

 

 



Demo of DM Disadvantage 
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100011 

001011 
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37 Other Block Placement Schemes 

Fully associative (FA) 

 Each block can be placed anywhere in the cache 

 Advantage:  

 No cache conflict  better cache hit rate than direct mapped 

 But, still see misses due to size (capacity miss) 

 Disadvantage:  

 Costly (hardware and time) to search for a block in the cache 

 

Set associative (SA) 

 Each block can be placed in a certain number of cache locations 

 A good compromise between direct mapped & fully associative 

 In terms of cost and hit rate 
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38 Fully Associative vs. Set Associative 

 Highlighted locations are placement candidates for memory block X 

 

 

 

 

 

 

 

 

 

 

 

 

 Assume both FA and SA have same number of cache blocks 

Fully associative 
cache 

cache 

block number 
7 6 5 4 3 2 1 0 

2-way set associative 

cache 

cache  

block number 
7 6 5 4 3 2 1 0 

Memory 

block X 

3 2 1 0 set number 
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39 Deciding Number of Sets in Set-Associate Cache 

Example: 2-way set-associative (SA) cache 

 Associativity = 2 

 Cache size = 16Kbytes 

 Cache block size = 32bytes 

 N = # of blocks in cache 

 # of cache sets = ? (in SA, N  Sets) 

 

 N = 16K / 32 = 512 

 

 # of cache sets = N / 2 

         = 256 

 

In general, for a m-way set-associative cache, 

 # of cache sets = cache size / cache block size / m  

32 bytes 

Cache 

#
 o

f 
 

c
a

c
h

e
 s

e
ts

 

… … 

32 bytes 
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40 Deciding Number of Sets in Fully-Associate Cache 

Fully-associative (FA) cache is a special case of set-associative cache 

 i.e. there is only ONE set in FA since a block can be placed anywhere 

 

Example: 

 Cache size = 16Kbytes 

 Cache block size = 32bytes 

 N = # of blocks in cache = 16K / 32 = 512 (still the same calculation) 

 # of cache sets = 1 

 



Block Placement Example 
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memory 

cache 

block, i.e. 32 bytes  

Fully  

Fully associative 
Directly mapped 
Set associative 

set 

block# 
#sets 

cache_location = block_address MOD 
number_of_sets_in_cache 
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42 Placement for N-way Set-Associative Cache 

An N-way set associative cache 

 Consists of a number of sets, each of which consists of N blocks 

 

Mapping strategy: 

 number_of_sets_in_cache = cache size / cache block size / N  

 cache_location = block_address MOD number_of_sets_in_cache 

 

Placement of the memory block 

 Can be in any “way” within the set 

 e.g. if 4-way, there are 4 feasible locations to cache the block  

 (how to choose the location to place it will be answered later) 

 

Special cases: 

 A direct mapped cache  as a 1-way set associative cache 

 A fully associative cache with M blocks  an M-way set associative 
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43 Possible Associativity Structures 

Example: 

 Cache Size = 256 bytes 

          = 64 words 

 Block Size = 32 bytes 

         = 8 words 

 Number of blocks = 8 

 

 

 

 

 

 

 

 Increase in degree of associativity  

Advantage: Decrease in miss rate 

Disadvantage: Increase in hit time (due to longer search time) 

One-way set associative 
(direct mapped) 

Two-way set associative 

Four-way set associative 

Eight-way set associative (fully associative) 

T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a T a g D a t a 

T a g D a t a T a g D a t a T a g D a t a T a g D a t a S e t 

0 

1 

T a g D a t a B l o c k 

0 

7 

1 

2 

3 

4 

5 

6 

T a g D a t a S e t 

0 

1 

2 

3 

T a g D a t a 
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44 Block Identification in DM 

 Assume a DM with 1024 cache sets 

 Assume the block size is 32 bytes 

 

 Each cache location can contain a 
block from a number of different 
memory locations 

 Question: how do we know which 
block is actually in the location, i.e. 
how to tell hit or miss? 

 A tag is used to store the address 
information 

 The tag needs only to contain 
those high-order bits that are not 
used as an index into the cache 

 A valid bit is needed to indicate 
whether a cache block contains 
valid information 

Address (showing bit positions) 

1 7 1 0 

0 

1 

2 

1 0 2 1 

1 0 2 2 

1 0 2 3 

1 7 3 2 

31 30……15 14….5 4...0  
byte 
offset 

Tag 
index 

index valid tag data 

data hit 

this symbol means 

“compare” 
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45 Example: Bits in a Cache 

 A DM cache with 16KB of data and 8-word (25 bytes) blocks 

 Assume a 32-bit address 

 How many total bits are required? 

 

16KB = 4K words = 212 words 

Block size of 8 words  29 blocks 

 

Each block has  8 x 32 = 256 bits of data 

A tag has 32 - 9 - 5 = 18 bits 

And, 1 valid bit 

Total bits per entry = (256 + 18 + 1) 

 

 Total cache size  

 29 x (256 + 18 + 1) = 29 x 275 = 140800 = 137.5 Kbits 

 How much overhead is needed? 
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46 Block Identification in N-way Set Associative Cache 

 Parallel lookup for the requested address in the cache set 

 

 

 

 

 

 

 

 

 

 
 

Questions to answer: 

 Which cache set? 

 i.e. which address bits are used?  

Memory address 

31 30  ……  13 12 …. 5  4 ...0  
byte 
offset 

1 9 8 

0 

1 

2 

2 5 3 

2 5 4 

2 5 5 

3 2 2 2 

4 - t o - 1   m u l t i p l e x o r 

H i t D a t a 

index V tag data tag data V tag data V tag data V 
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47 Block Identification in N-way Set Associative Cache 

Recall the N-way SA’s mapping strategy: 

 number_of_sets_in_cache = cache size / cache block size / N  

 cache_location = block_address MOD number_of_sets_in_cache 

 

If number_of_sets_in_cache = 2m,  

 Use next m address bits after the byte offset to serve as the index 

 

Example: 

 16KB cache, 4 ways, 32-byte cache block 

 number_of_sets_in_cache = 16K / 32 / 4 = 128 = 27 

 Byte offset = 5 (because 32 = 25 ) 

 So, bit 0~4 are for byte offset, bit 5~11 are for index, the rest is tag 

 

 
Memory address 

31 30  ……  12 11 …. 5  4 ...0  

index tag byte 
offset 
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48 Handling Cache Misses 

Upon a memory access by CPU, a request is sent to the first level cache 

 

If the cache reports a hit 

 CPU continues using the data from cache as if nothing had happened 

 

If the cache reposts a miss, some extra work is needed 

 A separate controller initiates a request to refill the cache 

 This request is sent to the next level cache or memory  

 (Keep going to next level until data are found) 

 During the process of refilling, CPU is stalled 

 Stall  entire CPU stops operating until the 1st-level cache is filled 

 Unlike interrupts, stall does not need saving the state of all registers 
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49 Flow of Handling Cache Accesses 

CPU 

Magnetic Disk 
(secondary storage) 

L1 

Cache 

Main memory 

memory request return data 

CPU 

Magnetic Disk 
(secondary storage) 

L1 

Cache 

Main memory 

memory request return data 

return data memory request 

Cache hit Cache Miss 
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50 Caching the Instruction 

Instructions are also stored in memory 

 

 Upon execution of a program, 

 CPU fetches instructions from memory 

 

 To avoid long instruction fetch, 

 same caching idea can be applied to 
instructions  

 

 An example of instruction cache in a 
two-level cache hierarchy is shown in 
the figure 

CPU 

Magnetic Disk 
(secondary storage) 

L1 Data 

Cache 

Main memory 

L2 Cache 

L1 Instruction 

Cache 
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51 Example: Steps on an Instruction Cache Miss 

1. Send the PC value to the memory 

2. Instruct main memory to perform a read and wait for completion 

3. Write the (instruction) cache entry, i.e. 

 Put the data from memory in the data portion of the entry 

 Write the upper bits of the PC into the tag field 

 Turn the valid bit on 

4. Restart the instruction execution at the first step 

 Which will re-fetch the instruction, this time finding it in the cache 

 

 Control of the cache on an instruction access is essentially identical: 

 On a miss, simply stall the CPU until the memory responds with instr. 



Real Stuff 
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Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache 

Intel Nehalem 4-core processor 
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53 Block Replacement 

 When a cache miss occurs, we must decide which block to replace 

 Why block replacement is needed? 

 

Block replacement for 

 Direct mapped: only one candidate (trivial case) 

 Fully associative: all blocks are candidates 

 Set associative: only blocks within a particular set are candidates 

 

Two primary replacement policies for associative caches 

 Random: 

 Candidate blocks are randomly selected to spread allocation uniformly 

 Least recently used (LRU):  

 The candidate is the block that has not been used for the longest time 

 Costly to implement for a degree of associativity higher than 2 or 4 
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54 Example of LRU Replacement Policy 

Assume the cache is 4-way set-associative 

Consider block address stream below (from left to right): 

 00110102, 00100102, 01100102, 10000102, 00010102, 00100102, 01000102 

 All these block addresses mapped to same set “010” 

 Question: which blocks remain in the set at the end? 

 

 Answer: (just look at the tag) 

   0011       0010       0110       1000       0001       0010       0100  

 

 

 

 

— 

— 

— 

— 

MRU 

LRU 

0011 

— 

— 

— 

miss 

0010 

— 

— 

0011 

miss 

0010 

— 

0011 

0110 

miss 

0010 

0011 

0110 

1000 

miss 

0010 

0001 

0110 

1000 

hit 

0010 

0001 

0110 

1000 

miss 

replace 0011 

0010 

0001 

0100 

1000 

miss 

replace 0110 
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55 LRU Replacement Policy 

Upon miss: 

 Replace the victim from the LRU position with miss address  

 Move the miss address to the MRU position 

 Heuristic: the LRU is not referenced for a long time, good candidate 

 

Upon hit: 

 Move the hit address to the MRU position 

 Then, pack the rest  

 Heuristic: the one just got hit should be the last one to be replaced 
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56 Dealing with Dirty Data 

Definition 

 If the content of a cache entry is modified, it is considered as dirty 

 

If a line is dirty, what should we do upon block replacement? 

 It is a question about how we update the memory 

 

Two options: 

1. Write-back 

2. Write-through 
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57 Write-Back Strategy 

Upon write access by CPU, 

 The information is written only to the block in the cache, not memory 

 

When the block becomes the candidate of replacement 

 The dirty block is written back to the main memory 

 

Advantages: 

 CPU can write individual words at the rate of the cache (not memory) 

 Multiple writes to a block are merged into one write to main memory 

 Since the entire block is written, system can make effective use of a 
high bandwidth transfer 

 

 As CPU speed increases at a rate faster than DRAM-based memory, 
more and more caches use the write-back strategy 
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58 Write-Through Strategy 

Upon all memory accesses, 

 The information is written to both the block in the cache and memory 

 (memory is always up-to-date) 

 

Advantages: 

 Handling of misses is simpler and cheaper 

Because they do not require a block to be written back to memory 

 Write-through is easier to implement than write-back 

 

Disdvantages: 

 Multiple writes to the same location consume memory bandwidth 

Waste of bandwidth as compared to write-back strategy 

Potentially slow down the reads to memory 

Notes: A write buffer is needed for a high-speed system if write-through strategy is used 

A write buffer is a queue to hold data while data are waiting to be written to memory 
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Write to block[4]   

Write-Back vs Write-Through 

CPU 

L1 

Cache 

Main memory 

Write to block[0]   

Write-Back Write-Through 

Upon replacement, write 

block[0~31] to memory 

in ONE burst 

CPU 

L1 

Cache 

Main memory 

Write to block[4]   

Write to block[0]   

Upon each write, update 

both cache and memory 


