3. Multiplication
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Multiplication 2

Q Multiplication is much more complicated than addition and subtraction

Q Paper-and-pencil example (1000,, x 1001,,):

Multiplicand 1000
Multiplier 1001
1000
0000
0000
1000
Product 1001000

a Observation:
Suppose we limit ourselves to using only digits 0 and 1

If we ignore the sign bits (i.e., unsigned numbers), multiplying an
N-bit multiplicand with an M-bit multiplier gives a product that is
at most N+M bits long
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Sequential Multiplication Hardware — Version 1

—

Multiplicand

Shift left

v

64 bits

N4
64-bit ALU /

Pro

duct

Write

64 bits

b

Multiplier
Shift right

32 bits

Control test

A

Q This version follows the flow of paper-and-pencil example
O One 64-bit ALU and three registers

o 64-bit multiplicand register, 64-bit product register, 32-bit multiplier register

Q Operations:

o The 32-bit multiplicand starts in the right half of the multiplicand register, and is

shifted left 1 bit at each step
o The multiplier register is shifted right 1 bit at each step

o The product register is initialized to 0
o Control decides when to shift the multiplicand and multiplier registers and when to

write new values into the product register
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Example for Multiplication Version 1

Q 4-bit unsigned integer multiplication: 0010 x 0011

Step Multiplier Multiplicand Product
0 | Initial values 0011 0000 0010 0000 0000
la: 1> Prod = Prod + Mcand 0011 0000 0010 0000 0010
1 | 2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0001 0000 0100 0000 0010
la: 1> Prod = Prod + Mcand 0001 0000 0100 0000 0110
2 | 2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110
1: 0> no operation 0000 0000 1000 0000 0110
3 | 2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110
1: 0> no operation 0000 0001 0000 0000 0110
4 | 2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

Q Color: initial value, recently changed, check bit
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Multiplication Algorithm Version 1 (in MIPS processor)

Multiplier0o = 1 Multiplier0 = 0

1. Test
MultiplierO

Three basic steps needed for
v each bit

la. Add multiplicand to product and
place the result in Product register

If we need one clock cycle for
[ each step then about 100 clock
2. Shift the Multiplicand register left 1 bit cycles are needed to multiply

| two 32-bit numbers

3. Shift the Multiplier register right 1 bit

l Slow!

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

( Done >
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Some Observations About Version 1

Q Only half of the multiplicand register contains useful bit values
Reduce multiplicand register size: 64-bit > 32-bit

Q A full 64-bit ALU is wasteful and slow
Because half of the adder bits add 0 to the intermediate sum
Reduce ALU size: 64-bit > 32-bit

Q The multiplicand is shifted left with Os inserted in the new positions

The multiplicand cannot affect the least significant bits of the
product after they settle down
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Example to Explain Version 2

Q Paper-and-pencil example (1000,, x 1001, ,):

Multiplicand (4-bit) 1000
Multiplier (4-bit) 1001
Product (8-bit) 0000 |0000
Add multiplicand 1000
Product 1000 0000
Product (shift right) ) 0100 {0000
Add O 0000
Product 0100 (0000
Product (shift right) 0010 |[0000
Add O 0000
Product 0010 |{0000
Product (shift right) ) 0001 {0000
Add multiplicand 1000
Product 1001 (0000
Product (shift right) ) 0100 {1000
Addition on
upper 4 bits
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Sequential Multiplication Hardware - Version 2

Q This version only needs a 32-bit multiplicand register and a 32-bit ALU
QA This version shifts “product” instead of “multiplicand”

Multiplicand
32 bits
1 e
N Multiplier
32-bit ALU Shift right |e—

32 hits

—
Product Shift ”g.ht (  Control test

Write <—v
64 bits

(changes made to previous version are highlighted in orange color)
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Some Observations About Version 2

a The number of used bits in the product register increases by 1 bit at
each step, from the initial value of 32 to the final value of 64

Q The number of used bits in the multiplier register decreases by 1 bit
at each step, from the initial value of 32 to the final value of 0

Q Hence, the unused bits of the multiplier register can be used for
storing part of the product

More specifically, the right half of the product register can be
combined with the multiplier register to save hardware
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Multiplication Hardware - Refined Version

Multiplicand

32 bits
v \4
MtALU aum
v >
Shift right Control
Product
W rite test
64 bits A

QO 32-bit ALU
O Two registers:

o Multiplicand register: 32 bits, Product register: 64 bits (right half also used
for storing multiplier)

O Operations:

The right half of the product register is initialized to the multiplier, and its left half
is initialized to 0

The two right-shifts at each step for version 2 are combined into only a single
right-shift because the product and multiplier registers have been combined

COMP2611 Fall 2015

Arithmetic for Computers



Multiplication Algorithm - Refined Version

Product0 =1 Product0 =0

1. Test
ProductO

A 4

la. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

\ 4 v

2. Shift the Product register right 1 bit

l

No: < 32 repetitions

Yes: 32 repetitions
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Example

Q Multiplication of two 4-bit unsigned numbers (0110 and 0011)

o Multiplier

Iteration | Multiplicand (M) | Product (P) Remark
0 OOOOK Initial state
: 0110 0011 | Left(P) = Left(P) + M
0011 0001 [P=P>>1
2 1001 0001 | Left(P) = Left(P) + M
0110 0100 1000 |P=P>>1
. 0100 1000 | No operation
0010 0100 |P=P>>1
; 0010 0100 | No operation
0001 0010 |P=P>>1
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Signed Multiplication

Q If the multiplicand or multiplier is negative, we first negate it to get a
positive humber

Q Use any one of the above methods to compute the product of two
positive numbers

Q The product should be negated if the original signs of the operands
disagree

Q Booth’s algorithm: a more efficient and elegant algorithm for the
multiplication of signed numbers (to be covered in tutorial)
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Hardware speedup

d Moore’s law implies more and more cheaper hardware resources
available

A Unroll the for loop and use 31 adders instead of single adder 32 times
[ This organization minimizes delay to do 1 Multiply in 5-add time

Mplier31 ¢ Mcand Mplier30 ¢ Mcand Mpl|er29 Mcand Mpl|er28 Mcand Mplier3 * Mcand Mplier2 * Mcand ~ Mplier1 * Mcand Mplier0 * Mcand

,,l ll l%

1 bit 1 1 bit+ bitd

N

\
\

1 bit

NV
32 bits

Product63 Product62 s Product47..16 . Product1 Product0
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Multiply in MIPS

O Separate pair of 32-bit registers to contain 64-bit product, Hi and Lo

d mult (multiply) and multu (multiply unsigned)
mult $s2, $s3 # Hi, Lo = $s2 x $s3
multu $s2, $s3 # Hi, Lo = $s2 x $s3
Both MIPS multiply instructions ignore overflow

No overflow if Hi is O for multu or the replicated sign of Lo
for mult

Q Fetch the integer 32-bit product

mflo (move from lo) mflo $sl # $s1 = Lo

mfhi (move from hi) mfhi $sl # $s1 = Hi

mfhi can transfer Hi to a general-purpose register to test for
overflow
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4. Division
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Division

Q Division is the reciprocal operation of multiplication

Q Paper-and-pencil example (1001010, / 1000,,):
1001 Quotient
Divisor 1000 11001010 Dividend
-1000
0010
0101
1010
-1000
10 Remainder

Dividend = Quotient x Divisor + Remainder
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Division Example in Binary

Q0 Paper-and-pencil 4-bit example (0111, / 0010,):

00011 Quotient
Divisor 0010 l00000111 Dividend
-0010
-00010
-000010
- 0010
00000011
- 0010
00000001 Remainder
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Division Hardware

—
Divisor
Shift right |«
64 bits
v L 4 -
\/ / Quotient
64-bit ALU / Shift left |€—
32 bits

v
Remainder m
W rite tey

64 bits A

O 64-bit ALU, three registers:
Divisor register: 64 bits, Quotient register: 32 bits, Remainder register: 64 bits

O Operations:
o 32-bit divisor starts in the left half of divisor register; is shifted right 1 bit at each step
o Quotient register is initialized to 0; shifted left 1 bit at each step
o Remainder register is initialized with the dividend
o Control decides
e when to shift the divisor and quotient registers
e when to write new values into the remainder register
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Division Algorithm

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder > 0 Remainder <0

4 l!

2a. Shift the Quotient register to the left, 2b. Restore the original value by adding
setting the new rightmost bit to 1 the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to O

v 4

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions
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Some Observations

Like the first version of the multiplication hardware

Q At most half of the divisor register has useful information
Both the divisor register and ALU could potentially be cut in half

Q Shift divisor register to right = Shift remainder register to left
Produce the same alignment

But, simplify hardware necessary for the ALU and divisor register

a Combine the remainder and quotient registers
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Division Hardware — Refined Version

Divisor

_l |32 bits
\/
32-bit ALU/"

!
Shift right |« /\
Remainder  Shift |eft Control
Write test

64 bits

(changes made to previous version are highlighted in orange color)
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Division Hardware — Refined Version

Q 32'bit ALU Divisor '

0 Two registers: w/
Divisor register: 32 bits __
Remainder register: 64 bits Rempinder st eft st
(right half also used for storing quotient) ki

O Operations:
32-bit divisor is always subtracted from the left half of remainder register
e The result is written back to the left half of the remainder register
The right half of the remainder register is initialized with the dividend
o Left shift remainder register by one before starting

The new order of the operations in the loop is that the remainder register
will be shifted left one time too many

e Thus, final correction step: must right shift back only the
remainder in the left half of the remainder register
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Example

Q0 Paper-and-pencil example (0111, / 0010,):

60011 Quotient

Divisor 0010 |00000111 Dividend

~0010

00001110
~0010

00011100

~0010

00111000

~0010

00011000

00110000

-0010
0001 Remainder
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Division Algorithm — Refined Version

1. Shift the Remainder register left 1 bit

!

2. Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the
Remainder register

l

Remainder> 0 Remainder <0

Test Remainder,

A y

3a. Shift the Remainder register to the 3b. Restore the original value by adding
left, setting the new rightmost bit to 1 the Divisor register to the left half of the
Remainder register and place the sum
in the left half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to 0

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

C)one. Shift left half of Remainder right 1 bD
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Example

A Division of a 4-bit unsigned number (0111) by another one (0011)

correction
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Iteration | Divisor (D) | Remainder (R) Remark
0 0000 0111 Initial state
0000 1110 R=R<<1
1101 1110 Left(R) = Left(R) — D
1 0000 1110 Undo
0001 1100 R=R<<1,R,=0
1110 1100 Left(R) = Left(R) — D
2 0011 0001 1100 Undo
0011 1000 R=R<<1,R,=0
3 0000 1000 Left(R) = Left(R) — D
0001 0001 R=R<<1,R,=1
1110 0001 Left(R) = Left(R) — D
4 0001 0001 Undo
0010 0010 R=R<<1,R,=0
extra Y O « | Left(R) = Left(R) >> 1
Remainder Y Quotient




Signed Division

Q Similar to signed multiplication, the signs of the divisor and dividend
are checked to determine whether the results (quotient and
remainder) should be negated.

ad Two rules to follow:

If the signs of the divisor and dividend are different, then the
quotient should be negated.

If the remainder is nonzero, then its sign should be the same as

that of the dividend.
ad Example:
Dividend  Divisor  Quotient Remainder
+7 +2 +3 +1
-7 +2 -3 -1
+7 -2 -3 +1
-7 -2 +3 -1
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Divide in MIPS

QA div ('divide")
A diwvu (‘divide unsigned')

Q Examples:
div $sl, $s2 # Lo
divu $sl, $s2 # Lo

$sl / $s2; Hi
$sl / $s2; Hi

Ssl mod $s2
Ssl mod $s2
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Floating Point Arithmetic
(optional)
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IEEE 754 Standard for floating point Arithmetic

Single precision:

Exponent 0 1-254 255
Significand
° ) E-127 (D7)
(1) x(L.F)x(2)="
0 (50 F)><(2)_126 non-numbers
: e.g. 0/0, V-1
Double precision:
Exponent 0 1 - 2046 2047
Significand
0 0 (-1)3x(x0)
+0 1022 (_1)SX(1'F)X(2)E_1023 non-numbers
~1)Sx(0.F)x(2)" i
(-D>x(0.F)x(2) e.g. 0/0,\/_—1
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Floating-Point Addition

O Example: 9.999,,x 10! + 1.610,, x 10!
aQ Assumptions:
Significand size = 4 decimal digits
Exponent size = 2 decimal digits

Algorithm:
1. Align the decimal point of the number that has the smaller exponent

0 e.g. 1.610,,x 10 becomes 0.016,, x 10?
2. Add the significands of the two numbers together

Qo e.g.9.999,,x 10! + 0.016,, x 10* = 10.015,, x 10?
3. Normalize the sum

0 e.g. 10.015,, x 10* becomes 1.0015,, x 10°
4. Round the normalized sum

0 e.g. 1.0015,, x 10% becomes 1.002,, x 107
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Floating-Point Addition

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

v

2. Add the significands

-

v

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Overflow or \\_Ye€s

underflow?

v

1 Exception }

4. Round the significand to the appropriate
number of bits

|
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Binary Example

d

Add 0.5,, and -0.4375, in binary using the above algorithm

Q Assume for simplicity that we only keep 4 bits of precision

a Answer:

» 0.5,=1.000, x 21

» —0.4375,,=-1.110,x 2

1. -1.110,x 22 = - 0.111, x 21

2. 1.000,x 27t + (- 0.111, x 2°'1) = 0.001, x 21

3. 0.001,x2!=1.000,x2* (no overflow/underflow)

4. 1.000, x 24 (fits in 4 bits, no need for rounding)
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Floating-Point Multiplication

O Example: (1.110,,x 10%%) x (9.200,, x 10)
aQ Assumptions:
Significand size = 4 decimal digits
Exponent size = 2 decimal digits

Algorithm:
1. Add the exponents together,

» new exponent =10+ (-5) =5
2. Multiply the significands together

» new significand = 1.110,,x 9.200,, = 10.212,
3. Normalize the product,

> 10.212,,x 10° = 1.0212 , x 10°
4. Round the product

> 1.0212,,x 10° = 1.021,, x 10°
5. Find the sign of the product

> +1.021,,x 10°
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Floating-Point Multiplication

COMP2611

([ 2015

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum
to get the new biased exponent

y

2. Multiply the significands

v

3. Normalize the product if necessary, shifting
it right and incrementing the exponent

l

Overflow or \_Y€s

underflow?

No

A

Y

‘ Exception '

4. Round the significand to the appropriate
number of bits

|

Still normalized?

Yes

5. Set the sign of the product to positive if the
signs of the original operands are the same;
if they differ make the sign negative

v

' Done >

Arithmetic



Binary Example

Q Multiply 0.5,, and -0.4375,, in binary using the above algorithm
Q Assume for simplicity that we only keep 4 bits of precision

O Answer:
» 0.5, =1.000, x 21
> —0.4375,, =-1.110, x 22

e new exponent =-1+ (-2) = -3

e new significand = 1.000, x 1.110, = 1.110,

e 1.110,x 23 remains unchanged (no overflow/underflow)
e 1.110,x 273 fits in 4 bits (no need for rounding)

e product =-1.110, x 273
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MIPS Instructions for Floating-Point Operations

Q MIPS supports IEEE 754 single-precision and double-precision formats

a Addition:
add. s (‘addition, single'), add.d (‘addition, double')
Q Subtraction:
sub . s (‘subtraction, single'), sub.d (‘subtraction, double')
Q Multiplication:
mul . s (‘multiplication, single'), mul.d (‘'multiplication, double')
Q Division:
div.s ('division, single'), div.d ('division, double')
d Comparison:
c.x.s (‘comparison, single'), ¢.x.d (‘comparison, double')
where x may be eq, neq, 1t, le, gt, ge
Q Branch:
belt ('branch, true'), bel£ (‘branch, false')
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Floating-Point Register

Q MIPS has a FP co-processor
Referred to as co-processor 1
Has its own floating-point (FP) registers: $£0, $£1, $£2, ...
These registers are used for either single or double precision

O Separate loads and stores for FP registers: 1wel and swcl

Q Example:
load two single precision humbers from memory
then, add them and store the sum

lwcl $£f4, 4($sp) # Load 32-bit f.p. number into F4
lwcl $£f6, 8(S$sp) # Load 32-bit f.p. number into F6
add.s $f2, $f4, $fé6 # F2 = F4 + F6 single precision
swcl $£2, 0($sp) # Store 32-bit f.p. number from F2
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Accurate Arithmetic

Q Floating-point numbers are normally approximations
An infinite variety of real numbers exists between 0 and 1
No more than 2°3 can be exactly represented in double precision

Q Do the best we can
Get floating-point representation close to actual number
Keeps 2 extra bits on the right during intermediate additions
e guard and round
Example:
e 2.56,, x 100 + 2.34,, x 102, assume 3 significant decimal digits

With guard and round digits without

2.3400, 2.3449

+ 0.0256,, +0.02,,

Guard 2_365610 round 2_3610
T + ¢ _—

After rounding 2.37,, x 102

COMP2611 Fall 2015 Arithmetic for Computers



Key Concepts to Remember

Q 2's complement representation for signed numbers

Q A 32-bit ALU can be built by connecting 32 1-bit ALUs together
Subtraction makes use of addition
SLT makes use of subtraction
A multiplexor is used in an ALU to select appropriate result
Carry lookahead adders better than ripple carry adders

O Multiplication: through a series of addition and shift operations
Q Division: through a series of subtraction and shift operations
Make sure you understand how the hardware algorithms work

Q Overflow (a type of exception)

A result of addition or subtraction
Detected by checking the signs of the operands and result
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Key Concepts to Remember (2)

Q Floating-point humbers
Representation follows closely the scientific notation
Almost all computers, including MIPS, follow IEEE 754 standard

a In MIPS,
Single-precision floating-point representation takes 32 bits
Double-precision floating-point representation takes 64 bits
Has a FP co-processor and separate FP registers

Q Overflow (underflow) in floating-point representation occurs
When the exponent is too large (small) to be represented
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