
COMP2611 Fall 2015

Arithmetic for Computers

COMP2611: Computer Organization

COMP2611 Fall 2015 Arithmetic for Computers

2 Major Goals

 Revisit addition & subtraction for 2's complement numbers

 Explain the construction of a 32-bit arithmetic logic unit (ALU)

 Show algorithms and implementations of multiplication and division

 Demonstrate floating-point arithmetic operations

COMP2611 Fall 2015 Arithmetic for Computers

3

1. 2’s Complement Arithmetic

COMP2611 Fall 2015 Arithmetic for Computers

4 Numbers

 Bits: the basis for binary number representation in digital computers

 We’ve learnt:

 How to represent negative numbers

 How to represent fractions and real numbers

 What is the representable range

COMP2611 Fall 2015 Arithmetic for Computers

5 Signed and Unsigned Numbers

 Signed numbers

 negative or non-negative integers, e.g. int in C/C++

 Unsigned numbers

 non-negative integers, e.g. unsigned int in C/C++

 Operations for unsigned numbers

 Comparison:

sltu (set on less than unsigned), sltiu

 Arithmetic:

addu, subu (add/subtract unsigned)

• Treat values of all registers as non-negative

addiu (add unsigned sign-extended immediate)

• The 16-bit immediate is sign-extended then addition
as above

addi (add signed immediate)

 Load:

lbu (load byte unsigned), lhu (load half unsigned)

COMP2611 Fall 2015 Arithmetic for Computers

6 Signed vs. Unsigned Comparison

 $s0 1111 1111 1111 1111 1111 1111 1111 11112

 $s1 0000 0000 0000 0000 0000 0000 0000 00012

 What are the values in registers $t0 and $t1 in the examples below?

slt $t0, $s0, $s1 # signed comparison

 $s0 = -110, $s1 = 110, $t0 = 1

sltu $t1, $s0, $s1 # unsigned comparison

 $s0 = 429496729510, $s1 = 110, $t1 = 0

COMP2611 Fall 2015 Arithmetic for Computers

7 Zero Extension and Sign Extension

 Operands in instruction may have mis-matched sizes

addi $t0, $s0, -5 # add 32-bit operands in $s0 with 16-bit
immediate value in 2’s complement

ori $t0, $s0, 0xFB32

lb $t0, 0($s0) # load a 8-bit signed number to 32-bit register

 Need conversion from n-bit binary numbers into m-bit numbers (m >
n)

 Sign extension: Fill the leftmost bits (n-th ~ (m-1)-th) with the sign
bit

2 (16 bits -> 32 bits):

0000 0000 0000 0010 -> 0000 0000 0000 0000 0000 0000 0000 0010

-2 (16 bits -> 32 bits):

1111 1111 1111 1110 -> 1111 1111 1111 1111 1111 1111 1111 1110

addi, lb

 Zero extension: Pad the leftmost bits (n-th ~ (m-1)-th) with 0

 and, or

Confusion on Unsigned Operation

 add immediate unsigned addiu $t0, $s1, 0xFB32

 Zero extended? WRONG

 MIPS unsigned arithmetic operations: addu, addiu, subu,
subiu, sltu, sltiu

 The immediate fields of addiu, sltiu are sign-extended!

The MIPS32 Instruction Set states that the word ‘unsigned’ as part of
add and subtract instructions, is a misnomer. The difference between
signed and unsigned versions of commands is not a sign extension of
the operands, but controls whether a trap is executed on overflow (i.e.
add) or an overflow is ignored (i.e. addu). An immediate operand
CONST to these instructions is always sign-extended.

COMP2611 Fall 2015 Arithmetic for Computers

8

COMP2611 Fall 2015 Arithmetic for Computers

9 Addition and Subtraction

 Addition

Bits are added bit by bit from right to left, with carries passed
to the next bit position to the left

 Subtraction

Subtraction uses addition

The appropriate operand is negated before being added to the
other operand

 Overflow

The result is too large to fit into a word (32 bits in MIPS)

COMP2611 Fall 2015 Arithmetic for Computers

10 Examples

Addition (7 + 6 = 13):

 0000 0000 0000 0000 0000 0000 0000 0111

2
 = 7

10

 + 0000 0000 0000 0000 0000 0000 0000 0110
2
 = 6

10

 = 0000 0000 0000 0000 0000 0000 0000 1101
2
 = 13

10

Subtraction (7 - 6 = 1):

 0000 0000 0000 0000 0000 0000 0000 0111

2
 = 7

10

 + 1111 1111 1111 1111 1111 1111 1111 1010
2
 = -6

10

 = 0000 0000 0000 0000 0000 0000 0000 0001
2
 = 1

10
1

COMP2611 Fall 2015 Arithmetic for Computers

11 Examples

Addition (1073741824 + 1073741824 = 2147483648):

 0100 0000 0000 0000 0000 0000 0000 0000

2
 = 1073741824

10

 + 0100 0000 0000 0000 0000 0000 0000 0000
2
 = 1073741824

10

 = 1000 0000 0000 0000 0000 0000 0000 0000
2
 2147483648

10

In 2’s complement the MSb is a sign bit

then, it means -214748364810

COMP2611 Fall 2015 Arithmetic for Computers

12

 Overflow condition

Detecting Overflow

Addition (X + Y)

 No overflow occurs when:

X and Y are of different signs

 Overflow occurs when:

X and Y are of the same sign

But, X + Y is represented in a
different sign

Subtraction (X - Y)

 No overflow occurs when:

X and Y are of the same sign

 Overflow occurs when:

X and Y are of different signs

But, X - Y is represented in a
different sign from X

0 0 1 X – Y

1 1 0 X – Y

0 1 1 X + Y

1 0 0 X + Y

Sign Bit of Result Sign Bit of Y Sign Bit of X Operation

COMP2611 Fall 2015 Arithmetic for Computers

13 Effects of Overflow

MIPS detects overflow with an exception (also called an interrupt)

 Exceptions occur when unscheduled events disrupt program execution

 Some instructions are designed to cause exceptions on overflow

e.g. add, addi and sub cause exceptions on overflow

But, addu, addiu and subu do not cause exceptions on overflow;

 programmers are responsible for using them correctly

When an overflow exception occurs

 Control jumps to a predefined address (code) to handle the
exception

 The interrupted address is saved to EPC for possible resumption

EPC = exception program counter; a special register

MIPS software return to the offending instruction via jump register

COMP2611 Fall 2015 Arithmetic for Computers

14

2. Arithmetic Logic Unit

COMP2611 Fall 2015 Arithmetic for Computers

15 Constructing an Arithmetic Logic Unit

 The arithmetic logic unit (ALU) of a computer is the hardware
component that performs:

Arithmetic operations (like addition and subtraction)

Logical operations (like AND and OR)

Control Unit

Registers
& Cache

ALU

Processor

COMP2611 Fall 2015 Arithmetic for Computers

16 Constructing an Arithmetic Logic Unit (cont’d)

 Since a word in MIPS is 32 bits wide, we need a 32-bit ALU

 Ideally, we can build a 32-bit ALU by connecting 32 1-bit ALUs
together (each of them takes care of the operation on one bit position)

 1-bit logical unit for AND and OR:

A multiplexor selects the appropriate result depending on the
operation specified

b

0

1

R e s u l t

O p e r a t i o n

a

COMP2611 Fall 2015 Arithmetic for Computers

17 1-Bit Full Adder

 An adder must have

Two inputs (bits) for the operands

A single-bit output for the sum

 Also, must have a second output to pass on the carry, called carry-out

Carry-out becomes the carry-in to the neighbouring adder

 1-bit full adder is also called a (3, 2) adder (3 inputs and 2 outputs)

(1) (1) (0) (carries)

 0 1 1 1

 0 1 1 0

 1 (1)1 (1)0 (0)1

S u m

C a r r y I n

C a r r y O u t

a

b

COMP2611 Fall 2015 Arithmetic for Computers

18 Truth Table and Logic Equations for 1-Bit Adder

 Truth table:

 Logic equations:

Outputs Inputs

1 + 1 + 1 = 112 1 1 1 1 1

1 + 1 + 0 = 102 0 1 0 1 1

1 + 0 + 1 = 102 0 1 1 0 1

1 + 0 + 0 = 012 1 0 0 0 1

0 + 1 + 1 = 102 0 1 1 1 0

0 + 1 + 0 = 012 1 0 0 1 0

0 + 0 + 1 = 012 1 0 1 0 0

0 + 0 + 0 = 002 0 0 0 0 0

Comments
SumOut CarryOut CarryIn b a

CarryOut = (b ×CarryIn) + (a ×CarryIn) + (a ×b) + (a ×b ×CarryIn)

 = (b ×CarryIn) + (a ×CarryIn) + (a ×b)

SumOut = (a ×b ×CarryIn) + (a ×b ×CarryIn) + (a ×b ×CarryIn)

 + (a ×b ×CarryIn)

COMP2611 Fall 2015 Arithmetic for Computers

19 Hardware Implementation of 1-Bit Adder

 SumOut bit: (It is left as an exercise)

)ba()CarryIna()CarryInb(

)CarryInba()ba()CarryIna()CarryInb(CarryOut

b

C a r r y O u t

a

C a r r y I n

COMP2611 Fall 2015 Arithmetic for Computers

20 1-Bit ALU (AND, OR, and Addition)

 3 in 1 building block

Use the Operation bits to decide what result to push out

Operation = 0, do AND

Operation = 1, do OR

Operation = 2, do addition

b

0

2

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

C a r r y O u t

COMP2611 Fall 2015 Arithmetic for Computers

21 32-Bit ALU

 Ripple carry organization of a
32-bit ALU constructed from 32
1-bit ALUs:

A single carry out of the least
significant bit (Result0) could
ripple all the way through the
adders, causing a carry out
of the most significant bit
(Result31)

There exist more efficient
implementations (based on
the carry lookahead idea
to be explained later)

R e s u l t 3 1

a 3 1

b 3 1

R e s u l t 0

C a r r y I n

a 0

b 0

R e s u l t 1

a 1

b 1

R e s u l t 2

a 2

b 2

O p e r a t i o n

A L U 0

C a r r y I n

C a r r y O u t

A L U 1

C a r r y I n

C a r r y O u t

A L U 2

C a r r y I n

C a r r y O u t

A L U 3 1

C a r r y I n

COMP2611 Fall 2015 Arithmetic for Computers

22 Subtraction

 Subtraction is the same as adding the negated operand

 By doing so, an adder can be used for both addition and subtraction

 A 2:1 multiplexor is used to choose between

 an operand (for addition) and

 its negative version (for subtraction)

 Shortcut for negating a 2's complement number:

 Invert each bit (to get the 1's complement representation)

 Add 1: Obtained by setting the ALU0’s carry bit to 1

COMP2611 Fall 2015 Arithmetic for Computers

23 1-Bit ALU (AND, OR, Addition, and Subtraction)

 To execute a – b we can execute a + (-b)

 Binvert: the selector input of a multiplexor to choose between addition
and subtraction

 To form a 32-bit ALU, connect 32 of these 1-bit ALUs

 To negate b we must invert it and add 1 (2’s complement), so we must
Set CarryIn input of the least significant bit (ALU0) to 1 for subtraction

0

2

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

C a r r y O u t

0

1

B i n v e r t

b

COMP2611 Fall 2015 Arithmetic for Computers

24 Tailoring the ALU for MIPS

 The 32-bit ALU being designed so far can perform add, sub, and, or
operations which constitute a large portion of MIPS’ instruction set

 Two instructions not yet supported are: slt and beq

 When we need to compare Rs to Rt

 By definition of slt, if Rs < Rt

• LSb of the output is set to 1

• Otherwise, it is reset to 0

 How to implement it?

 The comparison is equivalent to testing if (Rs – Rt) < 0

 If (Rs – Rt) is smaller than 0

• MSb of the subtraction (Rs – Rt) equals to 1 (means negative)

• Otherwise, MSb of the subtraction equals to 0

 Notice that the outcome of MSb is similar to the result of slt

 Idea: copy the MSb of the subtraction result to the LSb of
slt’s output. All other bits of the output are 0

 slt can be done using two types of 1-bit ALUs

COMP2611 Fall 2015 Arithmetic for Computers

25 Tailoring the ALU for MIPS

 How to implement it?

 The comparison is equivalent to testing if (Rs – Rt) < 0

 slt $t0, $s1, $s2

If Rs – Rt ≥ 0 If Rs – Rt < 0

. . . 28 29 30 31 0 1 2 3

. . .

. . . 28 29 30 31 0 1 2 3

. . .

$s1

$s2

Res
. . . 28 29 30 31 0 1 2 3

0 . . .

. . . 28 29 30 31 0 1 2 3

. . .

. . . 28 29 30 31 0 1 2 3

. . .

. . . 28 29 30 31 0 1 2 3

1 . . .

. . . 28 29 30 31 0 1 2 3

0 . . .

. . . 28 29 30 31 0 1 2 3

1 . . . $t0

All 0

COMP2611 Fall 2015 Arithmetic for Computers

26 Tailoring the ALU for MIPS (cont’d)

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

C a r r y O u t

0

1

B i n v e r t

b 2

L e s s

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

0

1

B i n v e r t

b 2

L e s s

S e t

O v e r f l o w
d e t e c t i o n

O v e r f l o w

 1-bit ALU for bits 0 to 30 1-bit ALU for the MSb (bit 31)

COMP2611 Fall 2015 Arithmetic for Computers

27 32-Bit ALU with (add, sub, AND, OR, slt)

 The “set” signal is the MSb
of the result of the
subtraction, A – B

 It is passed to LSB

 Result0 will equal to this
“set” signal when operation
= 3 (which means slt

instruction is being
executed)

S e t

a 3 1

0

A L U 0 R e s u l t 0

C a r r y I n

a 0

R e s u l t 1

a 1

0

R e s u l t 2

a 2

0

O p e r a t i o n

b 3 1

b 0

b 1

b 2

R e s u l t 3 1

O v e r f l o w

B i n v e r t

C a r r y I n

L e s s

C a r r y I n

C a r r y O u t

A L U 1

L e s s

C a r r y I n

C a r r y O u t

A L U 2

L e s s

C a r r y I n

C a r r y O u t

A L U 3 1

L e s s

C a r r y I n

COMP2611 Fall 2015 Arithmetic for Computers

28 Tailoring the ALU for MIPS

 To support beq

 We need to compare Rs to Rt

 The comparison is equivalent to testing if (Rs – Rt) == 0

 If (Rs – Rt) is equal to 0

• All bits of the output are 0

• Otherwise, at least one of them is non 0

COMP2611 Fall 2015 Arithmetic for Computers

29 32-Bit ALU with (add, sub, AND, OR, slt)

 Finally, this adds a zero
detector

 For addition and
AND/OR operations
both Bnegate and
CarryIn are 0 and for

subtract, they are both
1 so we combine them
into a single line

S e t
a 3 1

0

R e s u l t 0 a 0

R e s u l t 1 a 1

0

R e s u l t 2 a 2

0

O p e r a t i o n

b 3 1

b 0

b 1

b 2

R e s u l t 3 1

O v e r f l o w

B n e g a t e

Z e r o

A L U 0
L e s s

C a r r y I n

C a r r y O u t

A L U 1
L e s s

C a r r y I n

C a r r y O u t

A L U 2
L e s s

C a r r y I n

C a r r y O u t

A L U 3 1
L e s s

C a r r y I n

COMP2611 Fall 2015 Arithmetic for Computers

30 Universal Representation

 Knowing what is exactly inside a 32-bits ALU, from now on we will use
the universal symbol for a complete ALU as follows:

A L U

a

b

A L U o p e r a t i o n

C a r r y O u

R e s u l t
Z e r o

O v e r f l o w

t

AND 000

OR 001

ADD 010

SUB 110

SLT 111

Operation ALU Control lines

COMP2611 Fall 2015 Arithmetic for Computers

31 Carry Lookahead

 Using the ripple carry adder, the carry has to propagate from the LSb
to the MSb in a sequential manner, passing through all the 32 1-bit
adders one at a time. SLOW for time-critical hardware!

 Key idea behind fast carry schemes without the ripple effect:

Substituting the latter into the former, we have:

All other CarryIn bits can also be expressed using CarryIn0

)0b0a()0CarryIn0a()0CarryIn0b(1CarryIn

)1b1a()1CarryIn1a()1CarryIn1b(2CarryIn

)1b1a(

)0CarryIn0b1b()0CarryIn0a1b()0b0a1b(

)0CarryIn0b1a()0CarryIn0a1a()0b0a1a(2CarryIn

COMP2611 Fall 2015 Arithmetic for Computers

32 Carry Lookahead

 A Bit position generates a Carry iff both inputs are 1:

 A Bit position propagates a Carry if exactly one input is 1:

 Carryout at bit i can be expressed as:

 After substitution we have

 WE can build a circuit to predict all Carries at the same time and do
the additions in parallel

 Possible because electronic chips becoming cheaper and denser

G
i
= a

i
·b

i

P
i
= a

i
+b

i

C
i
= G

i
+P

i
·C

i-1

C
1
= G

0
+P

0
C

0

C
2

= G
1
+ G

0
P

1
+ C

0
P

0
P

1

C
3

= G
2

+ G
1
P

2
+ G

0
P

1
P

2
+ C

0
P

0
P

1
P

2

C
4

= G
3

+ G
2
P

3
+ G

1
P

2
P

3
+ G

0
P

1
P

2
P

3
+ C

0
P

0
P

1
P

2
P

3

(1) (1) (0)

 0 1 1 1

 0 1 1 0

 1 (1)1 (1)0 (0)1

COMP2611 Fall 2015 Arithmetic for Computers

33 Carry Lookahead Adder

