
Building an 1-bit ALU with Logisim

COMP2611: Computer Organization

COMP2611 2015Fall

Logisim

2Overview

 You will learn the following in this lab:

 building an 1-bit adder,

 building a 3-to-1 multiplexor,

 building an 1-bit ALU.

Logisim

3
Reminder : an 1-bit ALU that does AND, OR, Addition,
Subtraction 1/2

 The 1-bit ALU we are going to build can perform AND, OR, Addition
and Subtraction operations on two 1-bit inputs.

 A X-bit ALU can be built using X of the 1-bit ALUs shown above. Each
1-bit ALU will take care of the operations for exactly one bit.

Logisim

4
Reminder : an 1-bit ALU that does AND, OR, Addition,
Subtraction 2/2

The inputs of the 1-bit ALU are:

 an 1-bit operand “a”

 an 1-bit operand “b”

 an 1-bit input “CarryIn”

 an 1-bit control “Binvert”

 an y-bit control “Operation”, where y= log2(n) , n is the number
of inputs to the multiplexor.

The outputs of the 1-bit ALU are:

An 1-bit output “CarryOut”

An 1-bit output “Result”

We need to build ourselves two components, the adder, and a 3-to-1
multiplexor in order to implement the ALU.

Logisim

5Building the adder for the ALU 1/4

 Observation:

 the subtraction operation can be done using the 2’s complement
scheme (i.e. through the CarryIn and Binvert inputs), so we just
need to consider implementing the ADD operation.

 The inputs to the adder are:

 the input “a”, the input “b”, the input “CarryIn”

 The outputs of the adder are:

 an output to the multiplexor, let’s denote it by “SumOut”

 an output “CarryOut” (this output indicates whether there will be a
bit to be carried out to the next digit after the addition operation).

Logisim

6Building the adder for the ALU 2/4

 The truth table for the previous inputs and outputs is:

Inputs Outputs

CarryIn a b SumOut CarryOut

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Logisim

7Building the adder for the ALU 3/4

 The corresponding logic expressions for the truth table using the
Sum-Of-Product representation scheme are :

SumOut = (~CarryIn·~a·b) + (~CarryIn·a·~b)

+ (CarryIn·~a·~b) + (CarryIn·a·b)

CarryOut= (~CarryIn·a·b) + (CarryIn·~a·b)

+ (CarryIn·a·~b) + (CarryIn·a·b)

 Do let me know if you have problem to derive the above expressions.

 A question to ask: Is it possible to simplify the expressions for
“SumOut” and “CarryOut”?

Logisim

8Building the adder for the ALU 4/4

 Using the logic expression, design
the circuit for the adder.

 We have an example circuit at the
right.

 Please build your own circuit based
on the logic expressions and verify
its correctness by poking the input
values.

 Save the circuit as “1-bit-adder.circ”
for future uses.

Logisim

9Building the multiplexor for the ALU 1/5

 After building the adder, we now need to build the multiplexor.

 The multiplexor selects the output of the ALU among the outputs of
the AND, OR, and Addition/Subtract operations.

 We have 3 possible outputs to select from, thus we need log2(3) =
2 bits for the control signal (do ask me if you are not clear on this).

 You can define the way the multiplexor selects input as you wish.

Logisim

10Building the multiplexor for the ALU 2/5

 In the following, we define the truth table for the multiplexor as:

 You can define your truth table differently, as long as you remember
how you defined it.

Input Output

Operation Result

00 AND (indexed by 0)

01 OR (indexed by 1)

10 Add/Sub (indexed by 2)

11 undefined

Logisim

11Building the multiplexor for the ALU 3/5

 The truth table tells us that

 whenever the control signal, “Operation”, equals to 00, we should
generate an “1” and supply it properly to let the result of “AND”
operation go through the multiplexor (suppress all other results),

 whenever “Operation” equals to 01, we should generate a an “1”
and supply it properly to let the result of the “OR” operation get
through (suppress all other results),

 whenever “Operation” equals to 10, we should generate a an “1”
and supply it properly to let the result of the adder get through
(suppress all other results).

Logisim

12Building the multiplexor for the ALU 4/5

 Start a new Logisim project (press Ctrl+N). Design a multiplexor
according to the description. Feel free to ask me questions.

 Hint: you need 4 inputs and 1 output:

 an input that accepts the result from the “AND” operation,

 an input that accepts the result from the “OR” operation,

 an input that accepts the result from the “Adder”,

 a 2-bit control input “Operation”,

 an output that forwards one of the three results to “Result”.

 After you have implemented it, poke the inputs to verify it is correct.
For example, if the control signal “Operation” is 00, when you flip the
bit for the input from “AND”, you will notice the output of the
multiplexor, “Result”, flips accordingly. Verify also the correctness for
the control signal values of 01 and 10.

 Save the multiplexor as “3-input-multiplexor.circ” for future uses.

Logisim

13Building the multiplexor for the ALU 5/5

 The following is a sample circuit for the multiplexor, it is for your
reference.

Logisim

14Putting the pieces together: the 1-bit ALU 1/3

 Now we have all the required pieces and we can put them together to
make the 1-bit ALU.

 Load the files “1-bit-ALU.circ” and “3-input-multiplexor.circ” as
Logisim library (“Project”, “Load Library”, “Logisim Library…”).

 After that, you should be able to see the entries for the two sub-
circuits “1-bit-adder” and “3-input-multiplexor” in the “Explorer pane”:

 Drag them to the canvas and use them.

Logisim

15Putting the pieces together: the 1-bit ALU 2/3

 We still need another (2-to-1) multiplexor for the Adder for inverting the
input bit to make 2’s complement.

 You can use the Logisim built-in multiplexor for that.

 Just drag a multiplexer from the “Plexers” folder of the “Explorer pane”,
and edit the attributes in the “Attributes table” accordingly.

 It is a good chance for you to get familiar with the documents of Logisim.
Make sure you read the multiplexor description before using it:

http://www.cburch.com/logisim/docs/2.7/en/html/libs/plexers/mux.html

http://www.cburch.com/logisim/docs/2.7/en/html/libs/plexers/mux.html

Logisim

16Putting the pieces together: the 1-bit ALU 3/3

 Implement the 1-bit ALU as shown on slide 3. Poke the inputs to verify
the correctness of the ALU.

 Save it as “1-bit-alu.circ” for future uses.

 Here is an example implementation

Logisim

17Conclusions

 Today we have learnt:

 building an 1-bit adder,

 building a 3-to-1 multiplexor,

 building an 1-bit ALU.

