
MIPS function and recursion

COMP2611: Computer Organization

COMP2611 Fall2015

MIPS functions

2Overview

 You will learn the following in this lab:

 how to use MIPS functions in a program;

 the concept of recursion;

 how a recursion can be implemented correctly in MARS.
the concept of recursion,

the reason for using a stack to implement a recursion in MIPS,

how a recursion can be implemented correctly in MIPS.

MIPS functions

3MIPS functions

 Try the following example programs in order:

 functionCall1.s (returning through the address in $ra).

 functionCall2.s (can’t return because $ra has been overwritten).

 functionCall3.s (preserving the registers).

https://course.cse.ust.hk/comp2611/Password_Only/labs/lab8/functionCall1.s
https://course.cse.ust.hk/comp2611/Password_Only/labs/lab8/functionCall1.s
https://course.cse.ust.hk/comp2611/Password_Only/labs/lab8/functionCall2.s

MARS4MIPS recursion 1

 The idea of recursion is to solve a big problem by dividing it into a
number of smaller problems that are identical to the original
problem, and then further divide the smaller problems to even
smaller problems until we reach the base case.

MIPS recursion 2

 The base case is usually simple
enough to be solved
immediately.

 After solving the base case, we
return to one level up in the
recursion tree. With the result
from the base case we can
solve the problem at this level
easily. Then we return with the
result and solve the problem in
the next level (for example n=3
for factorial(n)).

 Eventually we return to the
original problem, and with the
result returned from the
immediate lower level, the
original problem is solved (i.e.
factorial(n) = n*factorial(n-1)).

factorial(n) = factorial(1) x 2 x 3… x n

factorial(1)

factorial(2) = factorial(1) x 2

factorial(3) = factorial(2) x 3

: :

: :

factorial(n-1) = factorial(n-2) x (n-1)

factorial(n) = factorial(n-1) x n

MARS6MIPS recursion 3

To implement the recursion in MIPS isn’t so straight forward.

 As you will see, you need to take care of the returning addresses of
the recursion in MIPS.

You may also need to store some intermediate results for further uses.

You will find the data structure known as “stack” useful for keeping
returning addresses and storing the intermediate results.

In this lab., we will go through a MIPS recursion program with you
and illustrate how we use the stack to implement a recursion.

MARS7Recursion example (factorial) 1

The following is a piece of sample recursive C/C++ code for
calculating the factorial:

1. int factorial (int n){ // n is assumed to be +ve

2. if (n <= 1)

3. return 1; // base case reached

4. else

5. return n*factorial (n - 1); // non-base case

6. }

MARS8Recursion example (factorial) 2

 Assume the argument n is stored in $a0 and the return value is
stored in $v0.

 The argument n in $a0 will be modified for multiple times as we run
the recursion, because we are calling the factorial function with
smaller and smaller values of argument.

 In order not to lose the current value of n when the factorial(n) is
being called, we need to push (store) the value of $a0 onto the
stack (why? Because you need n in order to calculate the value
n*factorial(n-1)!).

 Moreover, since factorial(n) is a recursion, it acts both as a caller and
as a callee. We must store $ra properly so that the function can
return correctly when it is a callee.

 Therefore we also need to store the value of $ra onto the stack.

MARS9Recursion example (factorial) 3

 The base case of the recursion is
simple.

 If n ($a0) is less than or equal to 1
just return with 1 as the result.

 This part of the code is simple
because it does not involve further
function calls, so there is no need to
push (store) the register values onto
the stack.

1. int factorial (int n){

2. if (n <= 1)

3. return 1;

4. else

5. return n*factorial (n - 1);

6. }

base_case: # Base Case

slti $t0, $a0, 2 # n<2? (if true n<=1)
addi $t1, $zero, 1 # copy 1 to $t1 for comparison

bne $t0, $t1, non_base_case # n >1, non-base case
addi $v0, $zero, 1 # n<=1, cal factorial(1)

jr $ra # return to the caller
: :

MARS10Recursion example (factorial) 4

 For the non-base case, we need to do four major things:

 Push (store) register values (of $a0 and $ra) onto the stack,

 Call the factorial part of the code for the value of f(n-1),

 Calculate for the value of n*f(n-1),

 Pop (retrieve) the register values, and return back to the caller.

 MIPS will not store the values of $a0 and $ra for you, even if they are
to be over written.

MARS11Recursion example (factorial) 5

 The MIPS codes on this slide

 update the stack pointer to store
two additional 32-bit words to
the memory,

 push/store register values (of
$a0 and $ra) onto the stack,

 reduce n by 1,

 call the factorial codes for the
value of f(n-1).

1. int factorial (int n){

2. if (n <= 1)

3. return 1;

4. else

5. return n*factorial (n - 1);

6. }

: :

bne $t0, $t1 , non_base_case # n >1
: :

non_base_case: # Non Base Case
addi $sp, $sp, -8 # Move the stack pointer down

sw $a0, 4($sp) # push $a0=n to the stack
sw $ra, 0($sp) # push $ra to the stack

addi $a0, $a0, -1 # reduce n by 1

jal factorial # cal factorial(n-1)
: :

MARS12Recursion example (factorial) 6

 The MIPS codes on this slide

 pop/retrieve the register values of
$a0 and $ra from the stack,

 update the stack pointer to free 2
words (occupied by the two
registers) from the memory,

 calculate the value n*f(n-1)

 return back to the caller.

1. int factorial (int n){

2. if (n <= 1)

3. return 1;

4. else

5. return n*factorial (n - 1);

6. }

: :

lw $a0, 4($sp) #pop n after calling factorial
lw $ra, 0($sp) #pop $ra after calling factorial

addi $sp, $sp, 8 #update the stack pointer
mult $a0, $v0 #calculate n*f(n-1) and

mflo $v0 #and store in $v0

jr $ra #return back to the caller
: :

MARS13Recursion example (factorial) 7

 Putting everything together we have:

factorial:

base_case: # Base Case

slti $t0, $a0, 2 # n<2 (if true n<=1)

addi $t1, $zero , 1

bne $t0, $t1, non_base_case # n >=2, jump to the part for the non-base case

addi $v0, $zero, 1 # n<2, do the calculation for the base case

jr $ra # return to the caller

non_base_case: # Non Base Case

addi $sp, $sp, -8 # Move the stack pointer down by 2 words

sw $a0, 4($sp) # push $a0=n to the stack

sw $ra, 0($sp) # push $ra to the stack

addi $a0, $a0, -1 # reduce n before calling factorial

jal factorial # recursively call factorial to cal factorial(n-1)

lw $a0, 4($sp) # pop n=$a0 after the call to factorial(n-1)

lw $ra, 0($sp) # pop $ra after the call to factorial(n-1)

addi $sp, $sp, 8 # update the stack pointer (free 2 words)

multu $a0, $v0 # calculate n*f(n-1) and store in $v0

mflo $v0 #

jr $ra # return to the caller

end:

.data

msg: .asciiz "Enter the value n:"
.text

.globl main

main:

#print a string

li $v0, 4

la $a0, msg

syscall

#read an integer into $v0

li $v0, 5

syscall

#$v0 contains n, now

add $a0, $v0, $zero
#calculate the factorial(n)

jal factorial

#copy the result to $a0

#output the result and terminate

add $a0, $v0, $zero
li $v0,1

syscall

j end

14Conclusion

 You have learnt:

 how to use MIPS functions in a program;

 we introduced briefly the concept of recursion;

 we mentioned the reason for using a stack to implement a
recursion;

 we show how a recursion can be correctly implemented.

