COMP2611: Computer Organization

Introduction to MARS & MIPS syscall

COMP2611 2015Fall

Introduction to MARS 2

a MARS is a MIPS computer simulator.

Q It can execute MIPS assembly programs by emulating itself as an
actual MIPS computer.

Q It provides some, but not all, operating system services which you will
see later.

MARS

0

The architecture of MARS 3

Console

Mars
Opeh l
Assembly MIFS e o Memory
Program Processor
r”; t“# ¥
Register Test Data
Windaw megrment megrment
Window Window

-

Window

- |

NMeszzages
Window

MARS

Getting and installing JRE

Q Before running MARS, you need Java Runtime Environment (JRE) of
Java SE 5 (also called Java 1.5) or later installed. It is already done in
the lab room.

Q You can choose the version of JRE to download on this website

0 Note that even if you use 64-bit Windows, you can still download
and install 32-bit (not only 64-bit) version of JRE on your
Windows.

QO To install JRE, double-click or run the downloaded file and follow
its installation instructions.

MARS

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Getting and running MARS 5

a To get MARS and run it
Q Browse the official site

0 Follow the instruction there (e.g., on the Download section) to
download and run MARS.

0O You can just download MARS from

, too. Then double-click the
downloaded .jar file in Windows to run MARS.

Q The Help manual of using MARS can viewed by selecting the Help-
>Help menu command on MARS.

File Edit Bun Settings Tools ﬂelp|

F1

= © teip

About ...
rEdrt Execute |

MARS

http://courses.missouristate.edu/KenVollmar/MARS/
http://course.cse.ust.hk/comp2611/

Running an assembly program

Q To run an assembly program
0 Create a new program file on MARS.
O Write its program code on the Editor window.

Q Save or Save As the file with “.s” as the file extension. Note that
you can also Open an existing .s file on MARS, instead of creating
a new file.

O Then Assemble the program file.
Q Finally, Run it.

Save Save As Assemble Run Program
Open
Setting)s Tools Help
Create New \{ — < @ [
Program (=) IEI ;}1 == 9 an p S ﬁl @ _
- 1 -
_ Edit |/E:¢Et:ute | El/ﬂeglsters rCupru[:1 rCupru[:I] |
sample.s “|__Mame Mumkber Value
Editor 1 .data $EEEO 0 000000000
. > Hlgat 1 Ox0o000000o0
Window 2 :
3 Xr .word T 18 3 : gwil z O=x00o00o00oo
4 stringl: .asciiz "abc ABD" Ewl 3 Ox 00000000
5 ¥ .byte 20 4 & zal 4 Ox0o000oooo
& |sal 5 0x00000000
L] il s I ACAnnnnnon

Stopping a program execution

Q After the program execution runs past the last instruction of the
program, it will terminate normally.

Q During the execution, it can also be terminated immediately using the
Stop button.

Q After the execution is terminated (in any ways), it can be reset (all the
registers and memory are re-initialized) using the Reset button for
another fresh start of the execution.

0 Some other buttons are for debugging a program and will be taught in
a future lab.

Stop Program

Execution
File Edit Bun Settings Tools Help /

i B o <
EMPEPRE RERNEEERRR @ rese
_ Edlit |/E:¢Et:ute | ;;l/ﬂegisters rCupru[:1 rCupru[:I] |
[sample.s | Mame Murnber Valle
i||Fzero] Ox00000000) -
é dara fgar 1 0x00000000
3 Xr .word T 18 3 gwil 2 D=000000o0a0
4 stringl: .asciiz "abc AED"” vl 3 0x00000000
5 ¥ .byte 20 4 & zal 4 Ox0000ooon
& |sal 5 0x00000000
- fE=] st

Example program 8

Try to create and run the following example program on MARS:

.data

X: .word 2 18 3
Y: .word 20 4
text

.globl __start

__start:

addi $t0, $zero, 5
addi $t1, $t0, -2

MARS

MARS user interface

File Edit Bun Settings Tools Help

B3 &Y e 90 %0 0|& & © @

Edit | Execute | ;l/ﬂegisters rCnprnc1 rCnprncI] |
— A mame Mumber Walle
Text Segment |5zera o Ox00000000] -
Bkpt | Address Code Source |sat 1 Ox 00000000)
Text Segment 0x 00400000 OxZ0050005 oo |12: addi $t0, s... |[gw0 2| 000000000 Registers
Window 0x00400004] 0x2109Effe co. |13: addi §tl, §... e 3 0x00000000 Window
“|gab 4 0x00000000
|sal 5 0x00000000
- [H’= 3 Dx00000000
Data Segment |[5a3 7 Ox00000000)=
v e en [nes [neT HER=0) & Ox00000005
Data Se ment fESS dile [+ dile [+ dile [+ 55 rl q OxO00000075
) 9 oot — 00000002 0x00000012| 0:x00000003) . [. [- |- |=]l| : i "
WIndOW PP e T B = R [n L i il nininin i tr n i ninininininin] [ni i nininlninininln] il $t2 ll:l I:I:’:DDDDDDDD
4| * |5e3 11 Ox00000000
|sea 1z 0x00000000
& B> | [0x10010000 (data) |+¥ sts 13 0%00000000—
|gta 14 Dx00000000
— :
|57 15 Ox00000000
@M“ﬂ o | &=0 16 000000000
531 17 0x00000000
/ -- profgram iz f£inished ruwning (dropped off bo s=2 15 Ox00000000
Messages Clear 533 19 Ox 00000000
Window HIEELr 20 0x00000000] |
4| Il | [»] || i|s=5 21 0x00000000
Console 1/0
Window

MARS

Registers Window

0 Registers Window
0 displays the registers of a MIPS processor.
0 including
0 the 32 general-purpose registers

QO By default, a register value is displayed in hexadecimal format
using 2's complement.

MARS

Registers Window

Q After running the example program you just created,

0 examine how the values of the registers t0 and t1 on the Registers
Window correspond to the program code;

0 modify the program code to set the value of t0 to 1 instead of 5
(as shown below) and save the code;

0O assemble and run the modified program.

Q What are the values of the registers t0 and t1 in the Registers
Window?

__start:

addi $t0, $zero, 1
addi $t1, $t0, -2

MARS

MIPS program memory layout

The layout of memory

UxYFFEFFFF
mtack segment
Drynarnic data
________________ Data segment
static data
e 1 QOQ0CD0
Text segment
a0 Q4000000
F.eserved

MARS

Text Segment Window

OText Segment Window
0 displays the TEXT segment of the memory contents,

I.e. the instruction code in the .text segment of the
program.

QO By default, your program code begins at 0x00400000.

0 Due to the 32-bit nature of MIPS, the second instruction is located
at 0x00400004.

d Examine how the Text Segment Window reflects the instructions in the
modified example program.

MARS

Data Segment Window

O Data Segment Window

0 displays various parts of the memory of your MIPS program, e.g.,
DATA, STACK, etc.

0 The data defined in the .data segment of the program is stored in the
DATA part of the memory.

0 This Drop-down List button can be clicked to select the different
part of memory fox the display.

0 The data on the window is updated as the program executes.

0O By default, a memory\value is displayed in hexadecimal format
using 2's complement.

a How is the data in the example program displayed in the window?

Data Segment

Address Walue (+0) Yalue (+4) Value\&E} &
Oxl00logool Q0=x00000002 0x00000012 DxEIEIEIEIDQEIS balbolbolbolbo i‘
Looo [aaTa -l :

nnnnnnnnnnnnnnnnnnnnnnnnnnn

a7 \ b

Messages Window & Console I/0 Window

O Messages Window
0 displays messages from the MIPS simulator of MARS.
0 It does not display outputs from an executing program.

Qd Console I/0 Window
0 When a program reads or writes, its IO appears on this window.

MARS

MIPS syscall services

0 A MIPS instruction syscall is defined to perform a system service, e.q.,
Console Input/Output.

0 Run the example program which uses the syscall to print
the string "Hello World" to the console.

0 Before executing the syscall instruction, you need to:

0 store the systemn call code (an integer) in the register vO, and the
service performed by the syscall is determined by this register
value (at the moment of executing the syscall instruction) .

QO pass any argument(s) for the syscall service via some particular
register(s), e.qg., passing the output value in the register a0 for
printing an integer to the console.

MIPS syscall services

https://course.cse.ust.hk/comp2611/labs/lab5/printString.s

Common syscall services

a Some common syscall services (you must know the yellow ones):

System
Service Call Code Arguments Result Example
($v0)
print_int 1 $a0=integer li $vO, 1
li $a0, 100
syscall
print_float 2 $f12=float
print_double 3 $f12=double
print_string 4 $a0=start address of the string
read_int 5 integer (in $v0) li $v0, 5
syscall
$v0 = input value
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0=buffer, $al=length
sbrk 9 $a0=amount address (in $v0)
exit 10 li $vO, 10
syscall

MIPS syscall services

Printing a string to console

char mesg[] =
{IHIJ IEI! II.!I III!I .ﬂlﬂ I .!I
W, '0%'r, T, I, W0
i main is the default
ffstarting point of the program

void main() {

cout << mesg;

In C++ In MIPS
fI C++ version S Data Segment —-————-
{f declare the string mesg .data

declare the string mesg
mesg: .asciiz "Hello Worldin"

- Text Segment —--—--—--
text

.globl main
main:

Execute the "print_str" system call

li $v0, 4
la $a0, mesg
syscall

| Address

[[=ED s o
mesg+1 ‘!
MEesi+2 T
mesq+3 i
mesg +4 ‘o
MEesq+5 i
mesg +6 i
Mes+7 o’
mesy+8 ir?
mesq+3 ‘I
mesg+10 il
mesg+11 “n’
mesg+12 i’

MIPS syscall services

Printing a string to console

In C++ In MIPS | Address
fi C++ version #-—— Data Segment —-———- Mesd H
_ mesg+1 ‘!
{f declare the string mesg .data mesq+2 "
char mesg[] = # declare the string mesg mesg+3 i
{H, e, 1T, e, mesg: .asciiz "Hello Worldin" mesq +4 o’
wWoe' ' 'l 'l In', 0) Mmeso+9 _
+B W
- Text Segmant _ ﬂzzzﬂ ‘o
if rnain is the default text Setting VO to 4, the — i
fistarting point of the program processor knows we mesn +3 T
void main{) { globl mair Need to print a string mes;+10 o
main: to the console when mesa 11 n
. mesg+12 a0’
cout << mesg; executing a syscall.
Execute the'print_str" system call
li $v0, 4
} la $a0, mesg
syscall

MIPS syscall services

Printing a string to console

In C++ In MIPS | Address
Jf C++ version #-—— Data Segment - :‘23” :::
{f declare the string mesg .data mesq+2 "
char mesg[] = # declare the string mesg mesg+3 i
i - R R mesgq: .asciiz "Hello Worldin" mesq +4 o’
wWoe' ' 'l 'l In', 0) MEsq +5 _
- Text Segmant ﬂzzzj T
/i main is the default text Setting vO to 4, the — w
jietartind meint Af the Araarsm processor knows we mesy+3 T
v« When la $a0, mesg globlmair Need to print a string mesy+10 o
is executed, the main: to the console when mesa 11 o
starting address of the executing a syscall. e
string will be assigned # Execute the'print_str" system call
to the register a0. | 1i$v0¥4
} \Ia $a0, mesg
syscall

MIPS syscall services

Printing a string to console

In C++

In MIPS e.g., if mesg (character 'H') is

ff C++ wersion
{f declare the string mesg
char mesg[] =
{H, e, 1T, "ol
W0, T, N, W0

i main is the default

Netartina moint Af the mrraorsm

v« When la $a0, mesg
IS executed, the

to the register a0.

starting address of the
string will be assigned

N

. r located at the 1001-th byte of — |
.dz memory, then a0 = 1001.

declare the string mesg

mesg: .asciiz "Hello Worldin"

e Text Segment
text Setting vO to 4, the

processor knows we
.globl mair Need to print a string
main: to the console when
executing a syscall.
Execute the'print_str" system call
li $v 0, 4

\Ia $a0, mesg

syscall

Mmeso+2

mesq+3

mesq+4

MESH +5

mesd +6

mesg+7

Friest +8

mesy+3

mesg+10

mesg+11

esg+12

MIPS syscall services

Printing a string to console

In C++

ff C++ wersion
{f declare the string mesg
char mesgﬂ =
{H', e 1T e, ",
W ote' ', I ', int, W0)

i main is the default

Netartina moint Af the mrraorsm

v« When la $a0, mesg
IS executed, the
starting address of the
string will be assigned

to the register a0. -

text

main:

Execute th

In MIPS e.g.,

li $v0, 4

syscall «—

- Text Segmeant

Setting vO to 4, the
processor knows we

.globl mair Need to print a string

to the console when
executlng a syscall

F

MIPS syscall services

If mesg (character 'H') is

. r located at the 1001-th byte of — |
.d3 memory, then a0 = 1001.

declare the string mesg

mesg: .asciiz "Hello Worldin"

Mmeso+2

mesq+3

mesq+4

MESH +5

mesd +6

mesg+7

Friest +8

mesy+3

mesg+10

mesg+11

esg+12

string character ('\O') is read.

After executing syscall, the processor reads
\Ia $20, me the memory byte by byte from the address
in a0 (e.g. 1001--> 1002 --> 1003 ..
on). The corresponding character will be
displayed one by one until the end of

. and so

Example programs

Q Try the following example programs:

0 (for Printing a string to the console).
0 (for Printing an integer to the console).
0 (for Reading an integer from the console).

MIPS syscall services

https://course.cse.ust.hk/comp2611/labs/lab5/printString.s
https://course.cse.ust.hk/comp2611/labs/lab5/printInt.s
https://course.cse.ust.hk/comp2611/labs/lab5/readInt.s

Syscall service "exit"

A The syscall service "exit" terminates the program immediately after
this syscall instruction is executed.

starting main program
text

.globl __start

__start:

addi $t0, $zero, 5
addi $t1, $t0, -2

li $v0, 10
syscall # the program is terminated after executing this syscall

the codes below will never be executed
addi $t1, $t1, 1
add $t1, $t0, $t1

Q Try the example programs and

MIPS syscall services

https://course.cse.ust.hk/comp2611/labs/lab5/exitExample1.s
https://course.cse.ust.hk/comp2611/labs/lab5/exitExample2.s

Example program

Q Try the example program :
0 It demonstrates the use of various syscall services together.

Q It prompts the user to enter two numbers on the console, reads
the input numbers and prints their sum to the console.

MIPS syscall services

https://course.cse.ust.hk/comp2611/labs/lab5/combinedSyscalls.s

Q By using the syscall services you have learnt:
0 write a MIPS program that prompts the user for two integer
inputs,
0 and displays the sum of the two integers,

0 the program should be able to exit using the syscall service after
displaying the sum,

0 you do not need to verify the correctness of the input integers.

Conclusion

O You have:
0 learnt how to get and use MARS;
0 learnt how to create and execute a MIPS program in MARS;
0 learnt using the user interface of MARS;

0 how to perform a system service using the instruction syscall in a
MIPS program.

MARS

