
Introduction to MARS & MIPS syscall

COMP2611: Computer Organization

COMP2611 2015Fall

2

MARS

2Introduction to MARS

 MARS is a MIPS computer simulator.

 It can execute MIPS assembly programs by emulating itself as an
actual MIPS computer.

 It provides some, but not all, operating system services which you will
see later.

3

MARS

3The architecture of MARS

4

MARS

4Getting and installing JRE

 Before running MARS, you need Java Runtime Environment (JRE) of
Java SE 5 (also called Java 1.5) or later installed. It is already done in
the lab room.

 You can choose the version of JRE to download on this website
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

 Note that even if you use 64-bit Windows, you can still download
and install 32-bit (not only 64-bit) version of JRE on your
Windows.

 To install JRE, double-click or run the downloaded file and follow
its installation instructions.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

5

MARS

5Getting and running MARS

 To get MARS and run it

 Browse the official site
http://courses.missouristate.edu/KenVollmar/MARS/

 Follow the instruction there (e.g., on the Download section) to
download and run MARS.

 You can just download MARS from

http://course.cse.ust.hk/comp2611/# , too. Then double-click the
downloaded .jar file in Windows to run MARS.

 The Help manual of using MARS can viewed by selecting the Help-
>Help menu command on MARS.

http://courses.missouristate.edu/KenVollmar/MARS/
http://course.cse.ust.hk/comp2611/

6

MARS

6Running an assembly program

 To run an assembly program

 Create a new program file on MARS.

 Write its program code on the Editor window.

 Save or Save As the file with “.s” as the file extension. Note that
you can also Open an existing .s file on MARS, instead of creating
a new file.

 Then Assemble the program file.

 Finally, Run it.

Editor

Window

Create New

Program

Open

Save Save As Run ProgramAssemble

7

MARS

7Stopping a program execution

 After the program execution runs past the last instruction of the
program, it will terminate normally.

 During the execution, it can also be terminated immediately using the
Stop button.

 After the execution is terminated (in any ways), it can be reset (all the
registers and memory are re-initialized) using the Reset button for
another fresh start of the execution.

 Some other buttons are for debugging a program and will be taught in
a future lab.

Stop Program

Execution

Reset

8

MARS

8Example program

Try to create and run the following example program on MARS:

.data

X: .word 2 18 3

Y: .word 20 4

.text

.globl __start

__start:

addi $t0, $zero, 5

addi $t1, $t0, -2

9

MARS

9MARS user interface

Text Segment

Window

Data Segment

Window

Messages

Window

Registers

Window

Console I/O

Window

10

MARS

10Registers Window

 Registers Window

 displays the registers of a MIPS processor.

 including

 the 32 general-purpose registers

 By default, a register value is displayed in hexadecimal format
using 2's complement.

11

MARS

11Registers Window

 After running the example program you just created,

 examine how the values of the registers t0 and t1 on the Registers
Window correspond to the program code;

 modify the program code to set the value of t0 to 1 instead of 5
(as shown below) and save the code;

 assemble and run the modified program.

 What are the values of the registers t0 and t1 in the Registers
Window?

.

.

.

__start:

addi $t0, $zero, 1

addi $t1, $t0, -2

.

.

.

12

MARS

12MIPS program memory layout

13

MARS

13Text Segment Window

Text Segment Window

 displays the TEXT segment of the memory contents,

i.e. the instruction code in the .text segment of the
program.

 By default, your program code begins at 0x00400000.

 Due to the 32-bit nature of MIPS, the second instruction is located
at 0x00400004.

Examine how the Text Segment Window reflects the instructions in the
modified example program.

14

MARS

14Data Segment Window

 Data Segment Window

 displays various parts of the memory of your MIPS program, e.g.,
DATA, STACK, etc.

 The data defined in the .data segment of the program is stored in the

DATA part of the memory.

 This Drop-down List button can be clicked to select the different
part of memory for the display.

 The data on the window is updated as the program executes.

 By default, a memory value is displayed in hexadecimal format
using 2's complement.

 How is the data in the example program displayed in the window?

15

MARS

15Messages Window & Console I/O Window

 Messages Window

 displays messages from the MIPS simulator of MARS.

 It does not display outputs from an executing program.

 Console I/O Window

 When a program reads or writes, its IO appears on this window.

MIPS syscall services

16MIPS syscall services

 A MIPS instruction syscall is defined to perform a system service, e.g.,
Console Input/Output.

 Run the example program printString.s which uses the syscall to print
the string "Hello World" to the console.

 Before executing the syscall instruction, you need to:

 store the system call code (an integer) in the register v0, and the
service performed by the syscall is determined by this register
value (at the moment of executing the syscall instruction) .

 pass any argument(s) for the syscall service via some particular
register(s), e.g., passing the output value in the register a0 for
printing an integer to the console.

https://course.cse.ust.hk/comp2611/labs/lab5/printString.s

MIPS syscall services

17Common syscall services

 Some common syscall services (you must know the yellow ones):

Service
System

Call Code
($v0)

Arguments Result Example

print_int 1 $a0=integer li $v0, 1
li $a0, 100
syscall

print_float 2 $f12=float

print_double 3 $f12=double

print_string 4 $a0=start address of the string

read_int 5 integer (in $v0) li $v0, 5
syscall

$v0 = input value

read_float 6 float (in $f0)

read_double 7 double (in $f0)

read_string 8 $a0=buffer, $a1=length

sbrk 9 $a0=amount address (in $v0)

exit 10 li $v0, 10
syscall

MIPS syscall services

18Printing a string to console

MIPS syscall services

19Printing a string to console

Setting v0 to 4, the

processor knows we

need to print a string

to the console when

executing a syscall.

MIPS syscall services

20Printing a string to console

Setting v0 to 4, the

processor knows we

need to print a string

to the console when

executing a syscall.

When la $a0, mesg

is executed, the

starting address of the

string will be assigned

to the register a0.

MIPS syscall services

21Printing a string to console

Setting v0 to 4, the

processor knows we

need to print a string

to the console when

executing a syscall.

When la $a0, mesg

is executed, the

starting address of the

string will be assigned

to the register a0.

e.g., if mesg (character 'H') is

located at the 1001-th byte of

memory, then a0 = 1001.

MIPS syscall services

22Printing a string to console

Setting v0 to 4, the

processor knows we

need to print a string

to the console when

executing a syscall.

When la $a0, mesg

is executed, the

starting address of the

string will be assigned

to the register a0.

e.g., if mesg (character 'H') is

located at the 1001-th byte of

memory, then a0 = 1001.

After executing syscall, the processor reads

the memory byte by byte from the address

in a0 (e.g. 1001--> 1002 --> 1003 ... and so

on). The corresponding character will be

displayed one by one until the end of

string character ('\0') is read.

MIPS syscall services

23Example programs

 Try the following example programs:

 printString.s (for Printing a string to the console).

 printInt.s (for Printing an integer to the console).

 readInt.s (for Reading an integer from the console).

https://course.cse.ust.hk/comp2611/labs/lab5/printString.s
https://course.cse.ust.hk/comp2611/labs/lab5/printInt.s
https://course.cse.ust.hk/comp2611/labs/lab5/readInt.s

MIPS syscall services

24Syscall service "exit"

 The syscall service "exit" terminates the program immediately after
this syscall instruction is executed.

starting main program

.text

.globl __start

__start:

addi $t0, $zero, 5

addi $t1, $t0, -2

li $v0, 10

syscall # the program is terminated after executing this syscall

the codes below will never be executed

addi $t1, $t1, 1

add $t1, $t0, $t1

 Try the example programs exitExample1.s and exitExample2.s.

https://course.cse.ust.hk/comp2611/labs/lab5/exitExample1.s
https://course.cse.ust.hk/comp2611/labs/lab5/exitExample2.s

MIPS syscall services

25Example program

 Try the example program combinedSyscalls.s:

 It demonstrates the use of various syscall services together.

 It prompts the user to enter two numbers on the console, reads
the input numbers and prints their sum to the console.

https://course.cse.ust.hk/comp2611/labs/lab5/combinedSyscalls.s

26

Exercise

 By using the syscall services you have learnt:

 write a MIPS program that prompts the user for two integer
inputs,

 and displays the sum of the two integers,

 the program should be able to exit using the syscall service after
displaying the sum,

 you do not need to verify the correctness of the input integers.

27

MARS

27Conclusion

 You have:

 learnt how to get and use MARS;

 learnt how to create and execute a MIPS program in MARS;

 learnt using the user interface of MARS;

 how to perform a system service using the instruction syscall in a
MIPS program.

