
C++ Classes

N:1-4; D:1,3,9,10

H.O. #7

Fall 2015

Gary Chan

Outline

 Procedural vs. Object-Oriented Programming

 Basic OOP

 Private and public data and member functions

 Accessor and mutators

 Constructors and initializer

 Separate compilation and conditional compilation directives to avoid
redundant declarations

 Constant member functions

 Operator overloading and friend

 Destructors

 Other issues

 Composition: Objects as members of classes

 Using this pointer

 Static class members

COMP2012H (Classes) 2

Motivation

 Types such as int, double, and char are “dumb” objects.

 They can only answer one question: “What value do you

contain?”

3!!!

COMP2012H (Classes) 3

Programming Paradigm: Procedural Concept

 The main program coordinates calls to procedures in

separate modules and hands over appropriate data as

parameters

COMP2012H (Classes) 4

Procedural Concept - Problems

 Designing operations on data

 The resulting module structure is oriented on the operations of input data

 The defined operations specify the data to be used

 The design is: Given data we have, what operations we need on

manipulating it?

 E.g., add(int a, int b);

COMP2012H (Classes) 5

Object-Oriented Concept (C++)

 Objects of the program interact by sending messages to the objects

 obj.RunCommand();

 obj1.add(obj2); // obj1 + obj2;

 The objects are then “wired” by their output and flow control

 If(obj1.speed() > obj2.speed())…

COMP2012H (Classes) 6

Procedural vs. Object Oriented

Procedural Object-oriented

 Action-oriented –

concentrates on the verbs

Programmers:

 Identify basic tasks to solve

problem given existing data

 Implement actions to do tasks as

subprograms (procedures/

functions/subroutines)

 Group subprograms into

programs/modules/libraries,

together make up a complete

system for solving the problem

 Focuses on the nouns of
problem specification

Programmers:

 Determine objects needed for the
problem

 Determine the operations of each
object

 Determine how objects should work
together to solve the problem

 Create types called classes with

 data members

 function members to operate on the
data

 Instances of a type (class) are called
objects

COMP2012H (Classes) 7

Classes

 Classes allow you to build “smart” objects that can answer many

questions (and perform various actions).

 “What is your temperature?”

 “What is your temperature in Fahrenheit?”

 “What is your temperature in Kelvin?”

 Objects may send messages to each other, which in turn affects

the operations of the objects. This leads to different outcomes

of the program.

 obj1.transfer(weapon, obj2);

COMP2012H (Classes) 8

OOD: Object-Oriented Design

 Identify the objects in the problem's specification

 Identify the operations or tasks to manipulate the objects

FinancialAidAward

amount

source

getAmount()

getsource()

display()

setAmount()

setSource()

data

operations
Think of them as Containers

COMP2012H (Classes) 9

First Look at ADTs & Implementations

 For a programming task we must identify

 The collection of data items

 Basic operations or algorithms to be performed on them

 Taken together (data items & operations) are called an

Abstract Data Type (ADT)

 As an application developer, you do not need to worry how

ADT is implemented --- you only need to worry about how they

are used

 ADT hence hides implementation details from its users

COMP2012H (Classes) 10

Class Declaration Syntax

 Class members are private by default, but can also be

declared private

class ClassName

{

public:

// Declarations of public members

private:

// Declarations of private members

};

COMP2012H (Classes) 11

Designing a Class

 Data members are normally placed in private: section of a
class

 Can only be manipulated directly inside the member functions of the same
class

 Cannot be accessed/called outside the class or by other objects

 Function members are usually in public: section

 Can be called by other objects

 Conventionally public: section followed by private:

 although not required by compiler

 There is also a protected: keyword

 Treated as private members against access outside the class

 Allow direct access to the members for the derived classes in inheritance
and polymorphism (later)

COMP2012H (Classes) 12

Private and Public Access

 Attributes (data members)

 Exist throughout the life of the object

 Each object of class maintains its own independent copy of attributes

 The access-specifier private makes a data member or
member function accessible only to member functions of the
same class

 private is the default access for class members

 Users cannot access and manipulate the data directly  Data hiding

 As a rule, data members should be declared private and
member functions should be declared public

 It is appropriate to declare certain member functions private, if

 they are helper functions to be accessed only by other member functions
of the same class

COMP2012H (Classes) 13

Example: Gradebook Class

 A simple object (book) with course name

 Class definition

 Tells compiler what member functions and data members belong to the

class

 Keyword class followed by the class’s name

 Class body is enclosed in braces ({};)

 Specifies data members and member functions

COMP2012H (Classes) 14

Gradebook1b.cpp

 We can separate the declaration of member functions from their

definitions

 Use the :: keyword

 Gradebook1b.cpp

COMP2012H (Classes) 15

Gradebook2.cpp Sample Output

Initial course name is: (there is nothing there)

Please enter the course name:

COMP2012 OOP and Date Structures

Welcome to the grade book for

COMP2012 OOP and Date Structures!

COMP2012H (Classes) 16

Gradebook Examples (Summary)

 Gradebook1.cpp

 Your simplest OOP program with class and object creation

 Class member function is implemented with its declaration

 Accessing public member functions and variables using ‘.’

 No private variables

 Gradebook1b.cpp

 Same as Gradebook1.cpp but with the member function implemented outside the class

 Gradebook2.cpp

 private member variable courseName

 Right of direct access to private variable within and outside the class

 Public member functions that allow clients of a class to set the values of private data
members are called mutators

 Public member functions that allow clients of a class to get the values of private data
members are called accessors

 Calling member function within a member function (getCourseName)

 Get input from users using getline and string STL (standard template library)

COMP2012H (Classes) 17

Data Integrity

 Data integrity are not automatic by putting data members as
private

 The programmer must provide appropriate validity checking and report
the errors

 Member functions that set the values of private data should
verify that the intended new values are proper

 They should place the private data members into an appropriate state

 set functions can be used to validate data besides simply setting
the value

 Known as validity checking

 Keeps object in a consistent state

 The data member contains a valid value

 Can return message indicating that attempts were made to assign invalid
data

COMP2012H (Classes) 18

Information hiding with set and get functions

 Using set and get functions control how clients access private

data

 Can be called by functions of other classes

 Should be used by other member functions of the same class

 even though the private data members can be accessed directly

 Localize the effects of changes to a class’s data members by

accessing and manipulating the data members through these

get and set functions

COMP2012H (Classes) 19

Caution with Set and Get Function

 Be careful when returning a reference to a variable

 Return a reference returns an acceptable lvalue that can be set a value,

i.e., may be used on the left side of an assignment statement

 The returned space can be alias to another variable

 One (dangerous) way to use this “return of reference”: A public

member function of a class returns a reference to a private

data member of that class

 Client code could alter private data members

 Same problem would occur if a pointer to private data were returned

COMP2012H (Classes) 20

 A bad setHour function

Caution with Set and Get Function

// POOR PROGRAMMING PRACTICE:

// Returning a reference to a private data member.

class Time{

public:

int & badSetHour(int);

private:

int hour;

};

int & Time::badSetHour(int hh)

{

hour = (hh >= 0 && hh < 24) ? hh : 0;

return hour; // DANGEROUS reference return

} // end function badSetHour

Boundary check: Good

private data member

COMP2012H (Classes) 21

Problems with the Above Example

 Modifying a private data member through a returned reference and set it to

invalid number without going through boundary check!

 For below, we have just modified private data by using the resturned lvalue

without going through boundary check!

 To protect against the above two cases, we should return const int &, or

return value instead

 If a function returns a const reference, that reference cannot be used as a modifiable lvalue

 Note that sometimes we do return a reference (e.g., overloading >> and <<)

Time t;

// initialize hourRef with the reference returned

int &hourRef = t.badSetHour(20); // 20 is a valid hour

// use hourRef as alias to set invalid value in Time t

hourRef = 30;

// assign another invalid value to hour

t.badSetHour(12) = 74;

COMP2012H (Classes) 22

Constructors

 A constructor is a special method/function that describes how an
instance of the class (called object) is constructed

 May be called implicitly when object is created

 Must be defined in your program with the same name as the class

 Cannot return values, not even void

 Whenever an instance of the class is created, its constructor is called.

 C++ provides a default constructor for each class, which is a
constructor with no input parameters (e.g., foo f;)

 The compiler will provide one when a class does not explicitly include a
constructor

 Compiler’s default constructor only calls constructors of data members of the
class

 The data members will have undefined values

 One can define multiple constructors for the same class, and may
even redefine the default constructor

COMP2012H (Classes) 23

Gradebook3.cpp

 Constructor syntax

 Default constructor and parameterized constructor

 Ways to construct objects

 Constructor codes may call member functions

COMP2012H (Classes) 24

Class Definitions: Another Example

 A C++ class consists of data members and methods (member functions).

class IntCell

{

public:

explicit IntCell(int initialValue = 0)

: storedValue(initialValue) {}

int read() const

{ return storedValue;}

void write(int x)

{ storedValue = x; }

private:

int storedValue;

}

Member functions

Data member(s)

Indicates that the member’s invocation does
not change any of the data members.

Avoid implicit type conversion

Initializer list: used to initialize the data
members directly. They are NOT functions

COMP2012H (Classes) 25

explicit and implicit constructor statements

main(){

int x = 4; // same as int x(4) or int x = int(4);

IntCell z(x), k(5.2); // storedValue is set to 4 and 5, resp.

IntCell t; // storedValue is now 0 (default

// constructor)

IntCell u = IntCell(x); // u’s storedValue is now 4

// conversion constructor is called and then

// copy construct as u

IntCell y = x; // invalid implicit conversion: y = IntCell(x)

…

}

Invalid because x has to be first implicitly converted to type IntCell (by calling
IntCell(x)) before the assignment y=x is done (i.e., doing y=IntCell(x)

implicitly).

However, if the explicit keyword is missing, the above codes would work without

compiler complaining.
COMP2012H (Classes) 26

Constant Object and Member Functions

 Principle of least privilege

 One of the most fundamental principles of good software engineering

 Applies to objects, too

 const objects

 Keyword const

 Specifies that an object is not modifiable

 Attempts to modify the object will result in compilation errors

COMP2012H (Classes) 27

const member functions

 Member functions declared const are not allowed to modify

the object

 A function is specified as const both in its class prototype and

in its definition

 For a const object, only its const member function can be

called

 Because all the other functions may modify its value

 const declarations are not allowed for constructors and

destructors

 Because by definition they modify the object

COMP2012H (Classes) 28

Const Member Functions Only Apply to the

Member Variables, NOT on the Heap

 The rule is that if the member function modifies the data member it stores, cannot
use const function.

 If the member function only modifies some internal hidden book-keeping
variables, using const is fine.

class foo{

public:

foo(){

pointer = new int[10];

}

void set_el() const{ // compiler ok to have const

pointer[1] = 10; // modify the heap

}

void set_ptr() { // cannot have const here

delete [] pointer;

pointer = new int[100]; // modify member variable

}

private:

int * pointer;

};

COMP2012H (Classes) 29

Constructors Syntax

 Member initializer list

 Invoke the constructors for the data members of the object whose memory

has been allocated

 Particularly important if you have reference or constant variable which

has to be initialized with a variable

 After the member initailizers are finished , the body of the constructor is

executed

 You can further change the values of the data members through some function

calls here.

ClassName::ClassName (parameter_list)

: member_initializer_list

{

// body of constructor definition

}

COMP2012H (Classes) 30

Member Initializer

 Required for initializing

 Data members that are references

 const data members

 Member initializer list

 Appears between a constructor’s parameter list with a colon (:) and the

left brace ({) that begins the constructor’s body

 Each member initializer consists of the data member name followed by

parentheses containing the member’s construction and its initial value

 Multiple member initializers are separated by commas

 Executes before the body of the constructor executes

COMP2012H (Classes) 31

Initializer to Initialize Variables on Its Construction

class foo{

public:

foo(): i(j), m(3), k(m), j(4) // any order

{

cout << i << j << k << m << endl;

}

private:

const int & i;

const int j; // ANSI C++ cannot have const int j = 4;

int & k;

int m; // ANSI C++ cannot have int m = 3;

};

class foo{

public:

foo(): i(j), k(m), j(4){

m=3;

cout << i << j << k << m << endl;

}

private:

const int & i;

const int j;

int & k;

int m;

};

class foo{

public:

foo(): i(j), k(m){

m=3;

j = 4; // compiler complains: assignment of read-only member `foo::j'

cout << i << j << k << m << endl;

}

private:

const int & i;

const int j;

int & k;

int m;

};

OK OK

NOT OK

4433

COMP2012H (Classes) 32

Increment Example for Initializer

 Increment.h

 Class definition with a constant integer

 No initialization at class definition

 Increment.cpp

 Initializer list to initialize constant integer

 const data member increment must be initialized using a member initializer

 Not providing a member initializer for a const data member is a

compilation error

 const2.cpp

 Driver program

COMP2012H (Classes) 33

Some Final Words on Constructor

 The compiler will always find the closest match among all of

your constructor statements

 Once a parameter in a constructor has a default value, all its

following parameters must have one.

class foobar{

public:

foobar(int a = 1, double d){ // compiler complains:

// default argument missing for parameter 2

i = a; j = d;

}

private:

int i;

double j;

};

COMP2012H (Classes) 34

#include <iostream>

using namespace std;

class foo{

public:

foo(double d = 4.0){

i = -1;

j = d;

} // compiler will match foo f(1.2) to this

foo(int a = 10){

i = a;

j = -2.0;

} // compiler will match foo f(1) to this

void print(void) const{

cout << i << " " << j << endl;

}

private:

int i;

double j;

};

int main(){

// foo a; // compiler complains: call of overloaded `foo()' is ambiguous

foo b(1); // ok – match to foo(int)

b.print();

foo c(1.0); // ok – match to foo(double)

c.print();

return 1;

}

1 -2

-1 1

COMP2012H (Classes) 35

class bar{

public:

bar(int a = 1, double d = 2.2){

i = a;

j = d;

}

// bar(); //if put this here, compiler complains (ambiguous constructor)

void print(void) const{

cout << i << " " << j << endl;

}

private:

int i;

double j;

};

int main(){

bar d; // ok

d.print();

bar e(2); // ok

e.print();

bar f(4.5); // ok; a gets 4

f.print();

bar *bptr = new bar [10]; // ok: all objects with default of a = 1 and d = 2.2

bar *bptr2 = new bar(); // same as bar *bptr = new bar ;

bar g(); // NOT a constructor; it is a function prototype stating

// that g is a FUNCTION returning bar

bar h(void); // NOT a constructor: a function prototype; does nothing

return 1;

}

1 2.2

2 2.2

4 2.2

COMP2012H (Classes) 36

GradeBook4.h and GradeBook4.cpp

 Separation of definitions of class and functions from their usage

 Same as Gradebook3.cpp, but broken into 2 files with main()

in Gradebook4.cpp

 GradeBook4.h

 Implementation details of class

 GradeBook4.cpp

 Usage of class

 #include “GradeBook4.h”to read in GradeBook4.h

COMP2012H (Classes) 37

Interface and Implementation

 In C++ it is more common to separate the class interface

from its implementation.

 Abstract data type

 The interface lists the class and its members (data and

functions).

 The implementation provides implementations of the

functions.

COMP2012H (Classes) 38

Separate File for Reusability

 Header files

 Separate files in which class definitions are placed

 Allow compiler to recognize the classes when used elsewhere

 Generally have .h filename extensions

 .cpp file is known as a source-code file to implement the

functions

 Driver files

 Program used to test software (such as classes)

 Contains a main function so it can be executed

COMP2012H (Classes) 39

#include preprocessor directive

#include "GradeBook.h"

 Used to include header files

 Instructs C++ preprocessor to replace directive with a copy of the

contents of the specified file

 Quotes indicate user-defined header files

 Preprocessor first looks in current directory

 If the file is not found, looks in C++ Standard Library directory

 Angle brackets indicate C++ Standard Library

 Preprocessor looks only in C++ Standard Library directory

 #include <iostream>

COMP2012H (Classes) 40

Interface

 Describes what services a class’s clients can use and how to

request those services

 But does not reveal how the class carries out the services

 A class definition that lists only member function names, return

types and parameter types

 Function prototypes

 A class’s interface consists of the class’s public member functions

(services)

COMP2012H (Classes) 41

class IntCell

{

public:

explicit IntCell(int

initialValue = 0);

int read() const;

void write(int x);

private:

int storedValue;

}

IntCell::IntCell(int initialValue)

: storedValue (initialValue)

{ }

int IntCell::read() const

{ return storedValue; }

void IntCell::write(int x)

{ storedValue = x; }

The interface is typically placed in a file that ends with .h. The member
functions are defined as:

ReturnType FunctionName(parameterList);
The implementation file typically ends with .cpp, .cc, or .C. The
member functions are defined as follows:

ReturnType ClassName::FunctionName(parameterList)
{ …… }

IntCell.h IntCell.cpp

Scoping operator
COMP2012H (Classes) 42

Separating Interface from Implementation

 Client code should not break if the implementation changes, as

long as the interface stays the same

 Define member functions outside the class definition, in a

separate source-code file

 In source-code file for a class

 Use binary scope resolution operator (::) to “tie” each member function

to the class definition

 Implementation details are hidden

 Client code does not need to know the implementation

 In the header file for a class

 Function prototypes describe the class’s public interface

COMP2012H (Classes) 43

Separating Interface from Implementation (Cont.)

 Makes it easier to modify programs

 Changes in the class’s implementation do not affect the client as long as

the class’s interface remains unchanged

 Things are not quite this rosy

 Header files do contain some portions of the implementation and hint

about others

 private members are listed in the class definition in the header file

COMP2012H (Classes) 44

Typical C++ Development Environment

 Edit

 Programmer writes program (and
stores source code on disk)

 Preprocess
 Perform certain manipulations and file

I/O to prepare for compilation

 Compile

 Compiler translates C++ programs
into machine languages in object
codes

 Link

 Link object codes with missing functions
and data

 Load
 Transfer executable image to memory

 Execute

 Execute the program one instruction at
a time

COMP2012H (Classes) 45

The Compilation and Linking Process

 Source-code file is compiled

to create the class’s object

code (source-code file must

#include header file)

 Class implementation

programmer only needs to

provide header file and object

code to client

 Client must #include header

file in their own code

 So compiler can ensure that the

main function creates and

manipulates objects of the class

correctly

COMP2012H (Classes) 46

Class Libraries

 Class declarations placed in header file

 Given .h extension

 Contains data items and prototypes

 Implementation file

 Same prefix name as header file

 Given .cpp extension

 Programs which use this class library called client programs

COMP2012H (Classes) 47

Compilation Process

Program

Source File

Library

Header File

Library

Implementation File

C++

Compiler

C++

Compiler

Linker

Program

Object File

Library

Object File

Program

Executable File

g++ -c

g++ -c

.o

.o

e.g.,

g++ main.cpp bar.o fb.o

COMP2012H (Classes) 48

#include <iostream>

#include "library.h"

using namespace std;

int TestInt=99;

int main(){

cout << "Hello"<<endl;

TestInt = 10;

cout << functionA(100) << endl;

return 0;

}

#include "library.h"

int functionA(int i){

return TestInt * i;

}

#ifndef ABC

#define ABC

int TestInt = 99;

int functionA(int);

#endif

> g++ main.cpp source.cpp

ld: fatal: symbol `TestInt' is multiply-defined:

(file /var/tmp/ccvkmxE2.o type=OBJT; file /var/tmp/ccgj1SDu.o

type=OBJT);

ld: fatal: File processing errors. No output written to a.out

collect2: ld returned 1 exit status

main.cpp

source.cpp

--------------- extern int TestInt;

Output:

Hello

1000

library.h

COMP2012H (Classes) 49

Why #ifndefine #define #endif Statement?

 It is ok to have multiple declarations of a function prototype, but not

for its definition

 In the .h file, put the prototypes there

 .h files are likely to be multiply-included

 In creating the .o file, there may be nested #include statements

 The nested #include statement may be recursive

 In main.cpp, #include “foo.h”

 In foo.h, #include “bar.h”

 In bar.h, #include “foo.h”

 To break the infinite “recursive” inclusion, use #ifndefine #define to

define a “variable” in the compilation process of .o file

 If a variable has been defined, the compiler will skip the code

segment between #ifndefine and #endif.

COMP2012H (Classes) 50

GradeBook6
 GradeBook6.h

 Header file

 Only specifies how the class functions can be used, not how they are implemented

 #ifndefine… #define… #endif

 GradeBook6.cpp

 Implementation file

 Only specifies how the functions are implemented

 No main()

 #include “GradeBook6.h”

 driver6.cpp

 Driver program with main()

 Uses the class functions

 #include “GradeBook6.h”

 In Linux, compile them all together using

g++ Gradebook6.cpp driver6.cpp

 Or using object files:

g++ -c Gradebook6.cpp; g++ -c driver6.cpp; g++ Gradebook6.o
driver6.o

COMP2012H (Classes) 51

driver6.cpp Sample Output

Name "COMP2011 Introduction to Programming in C++" exceeds maximum

length (25).

Limiting courseName to first 25 characters.

Name "COMP2012 OOP and Data Structures" exceeds maximum length

(25).

Limiting courseName to first 25 characters.

gradeBook1's initial course name is: COMP1004 Introduction to

gradeBook2's initial course name is: COMP2012 OOP and Data Str

gradeBook1's course name is: COMP104 C++ Programming

gradeBook2's course name is: COMP2012 OOP and Data Str

COMP2012H (Classes) 52

Time.h and Time.cpp

 Display and change time

 Starting from 12:00am (midnight) to 11:59pm

 Keep a military time

 Converting a normal time to a 4-digit integer

 2:05am  205

 4:15pm  1615

 12:00am (midnight)  0000 (or simply 0)

 Constructor

 Initializer list

 Default constructor

 Explicit-value constructor

COMP2012H (Classes) 53

Overloading Functions

 Note existence of multiple functions with the same name

 Known as overloading

 Compiler compares numbers and types of arguments of

overloaded functions

 Checks the "signature" of the functions

Time();

Time(unsigned initHours,

unsigned initMinutes,

char initAMPM);

COMP2012H (Classes) 54

Default Arguments

 Can be combined to specify default values for constructor

arguments

t1

myHours 12

myMinutes 0

myAMorPM A

myMilTime 0

t2

myHours 5

myMinutes 0

myAMorPM A

myMilTime 500

t3

myHours 6

myMinutes 30

myAMorPM A

myMilTime 630

t4

myHours 8

myMinutes 15

myAMorPM P

myMilTime 2015

Time(unsigned initHours = 12,

unsigned initMinutes = 0,

char initAMPM = 'A');

Time t1, t2(5), t3(6,30), t4(8,15,'P');

COMP2012H (Classes) 55

Copy Constructor and Assignment

 Copy constructor

(default):
Time t = bedTime;

//calls Time t(bedTime);

 During assignment

t = midnight;

bedTime

myHours 11

myMinutes 30

myAMorPM P

myMilTime 2330

t

myHours 11

myMinutes 30

myAMorPM P

myMilTime 2330

midnight

myHours 12

myMinutes 0

myAMorPM A

myMilTime 0

t

myHours 12

myMinutes 0

myAMorPM A

myMilTime 0

COMP2012H (Classes) 56

Display Functions

 Two functions used for output

 void display(ostream &) inside the class as member function

 ostream & operator<<(ostream &, const Time &) outside the

class as an external function

 The display function:

 We’d like to have cout << t1 << t2;

void Time::display(ostream & out) const

{

out << myHours << ':'

<< (myMinutes < 10 ? "0" : "") << myMinutes

<< ' ' << myAMorPM << ".M. ("

<< myMilTime << " mil. time)";

}

COMP2012H (Classes) 57

Implementing Output by Overloading <<

 Use the public display() function to display the object

 Declaration in .h file

 Definition in .cpp file

class Time {

…

};

ostream & operator<<(ostream & out, const Time & t);

ostream & operator<<(ostream & out, const Time & t)

{

t.display(out);

return out;

}

COMP2012H (Classes) 58

Read Functions

 Two functions used for intput

 read() inside the class as member function

 Operator>>() outside the class as an external function

 The read function:

 We’d like to have cin >> t1 >> t2;

void Time::read(istream & in){

unsigned hours, // Local variables to hold input values from in so

minutes; // they can be checked against the class invariant

char am_pm, // before putting them in the data members

ch; // To gobble up ':' and the 'M' in input

in >> hours >> ch >> minutes >> am_pm >> ch; // e.g., 3:18 PM

set(hours, minutes, am_pm); // use mutator to check validity

}

COMP2012H (Classes) 59

Implementing Input by Overloading >>

 Use the public display() function to display the object

 Declaration in .h file

 Definition in .cpp file

class Time {

…

};

istream & operator>>(istream & in, Time & t);

istream & operator>>(istream & in, Time & t)

{

t.read(in);

return in; // return in for input cascading

}

COMP2012H (Classes) 60

Relational Operators

 In Time.cpp

bool operator<(const Time & t1, const Time & t2) {

return t1.getMilTime() < t2.getMilTime();

}

bool operator>(const Time & t1, const Time & t2) {

return t1.getMilTime() > t2.getMilTime();

}

bool operator==(const Time & t1, const Time & t2) {

return t1.getMilTime() == t2.getMilTime();

// may also return (!(t1 < t2) && !(t1 > t2));

}

bool operator<=(const Time & t1, const Time & t2) {

return t1.getMilTime() <= t2.getMilTime();

// or return !(t1 > t2);

}

COMP2012H (Classes) 61

friend Functions

 It is possible to specify an operator, e.g., operator<<(), as a

"friend" function

 Thus give "permission" to an external function to access private data

elements directly

 Declaration in .h file

class Time {

…

friend ostream & operator<<(ostream & out, const

Time & t);

};

COMP2012H (Classes) 62

friend Functions (Cont.)

 Definition in .cpp file

 cout << t is converted to operator<<(cout, t)

 Note that the function can directly access private data members without
going through accessor functions

 Remember to return ostream as a reference as we require it to be used in
cascade

 A friend function is NOT a member function

 not qualified with class name and ::

 receives class object on which it operates as a parameter

ostream & operator<<(ostream &out, const Time &t)

{

out << t.myHours<<":"

<< (t.myMinutes< 10? "0": "") //print,e.g., 05

<< t.myMinutes

<< ' '<<t.myAMorPM<<".M.";

return out;

}

COMP2012H (Classes) 63

3 Ways of Operator Overloading

 As an external function (external view)

 Has to use accessors and mutators to get or set variables

 Discussed in Time.h

 Best used when the original class cannot be modified

 As a friend of an external function

 Can directly access data members

 Discussed just now in the slides

 Best used when efficiency is needed without affecting the original class

codes

 As a member function (internal view of the object)

 Can directly access data members

 Best used when the operator overloading are developed with the class

COMP2012H (Classes) 64

Internal Function: Operator Overloading for a

Complex Class

class Complex {

public:

...// constructor with two parameters: Complex(double, double);

Complex operator +(const Complex &op) {

double real = _real + op._real,

imag = _imag + op._imag;

return(Complex(real, imag)); //construct a Complex object

}

...

};

 An expression of the form
c = a + b;

is translated into a method call
c = a.operator +(b);

 We need to return the result in a complex object so that we can compute
a+b+c

 We have made the operator + a member of class Complex. This is an
internal view of the object (the object is added to op), which differs from the
external declaration of adding two objects to be discussed next: Complex
operator+(const Complex &a, const Complex &b);

self

COMP2012H (Classes) 65

External Function: Operator Overloading for

Complex Objects

 The overloaded operator may not be a member of a class: It can rather be
defined outside the class as a normal overloaded function. For example, we could
define operator +, which takes two arguments, in this way:

class Complex {

public:

...

double real() const { return _real; }

double imag() const { return _imag; }

// No need to define any operator here!

private:

double _real, _imag;

};

//add two objects together

Complex operator +(const Complex &op1, const Complex &op2) {

double real = op1.real() + op2.real(), // cannot access private data member

imag = op1.imag() + op2.imag();

return(Complex(real, imag)); // call constructor

}

 A call of a+b is then converted to operator+(a,b)
COMP2012H (Classes) 66

Friend for Complex Objects

 We can define functions or classes to be friends of a class to
allow them direct access to its private data members

class Complex {

public:

...

friend Complex operator +(

const Complex &,

const Complex &

); // NOT member function

};

Complex operator +(const Complex &op1, const Complex &op2) {

double real = op1._real + op2._real, //access private data members due to friend

imag = op1._imag + op2._imag;

return(Complex(real, imag));

}

COMP2012H (Classes) 67

Destructor

 C++ destroys an object when it goes out of scope; called

implicitly when an object is destroyed

 When functions returns; program execution leaves the scope in which that

object was instantiated

 When delete is called on the object

 A special member function

 Name is the tilde character (~) followed by the class name

 e.g., ~Time();

 The default destructor is to free up all the private members

 Pointers are not traversed, and hence may have leak problem!

 To declare a destructor, use a member function which has no

return and no parameters: ~foo();

COMP2012H (Classes) 68

 C++ provides a default destructor for each class

 If the programmer does not explicitly provide a destructor, the
compiler creates an “empty” destructor

 The default simply applies the destructor on each data member.

 We can redefine the destructor of a class.

 A C++ class can have only one destructor
 Destructor overloading is not allowed

 Receives no parameters and returns no value

 May not specify a return type—not even void

 It is a syntax error to attempt to

 pass arguments to a destructor

 specify a return type for a destructor (even void cannot be specified)

 return values from a destructor

 overload a destructor

Destructor (Cont.)

COMP2012H (Classes) 69

Some Words on Destructor

 Outside a class, you should almost never call a destructor :
foo f;

f.~foo(); // not ok, as it does not destroy the object.

// Please let the system takes care of the local variables

foo *fptr = new foo;

fptr -> ~foo(); // not ok, use delete fptr; instead

 Within a class, you may call the destructor as a member function

to execute the destructor body (which is NOT to destroy the

whole object):
void foo::bar(){

~foo(); // execute the destructor body

// some other codes here

}

COMP2012H (Classes) 70

Other Issues

Constant Object and Constant Member Functions

 Member functions declared const are not allowed to modify the object

 A function is specified as const BOTH in its prototype and in its definition

 Const declarations are not allowed for constructors and destructors

 Const objects can only call const member functions

 Therefore declare const in a function if it does not modify the object, so that a const
object can use it

 Const object can access both constant and non-constant member variables

 Declaring const has another advantage: if the member function is
inadvertently written to modify the object, the compiler will issue an error
message

 const data members

 It is an error to modify a const data member

 Prevents accidental changes to a data member in any member functions

 Must be initialized with a member initializer

COMP2012H (Classes) 72

#include <iostream>

using namespace std;

class foo{

public:

int i;

const int j;

foo(): j(2), i(3){}

void print(void) const {

cout << i << endl; cout << j << endl;

}

void print2(void) {

cout << i << endl; cout << j << endl;

}

};

int main(){

const foo f;

// f.j = 10; Compilation error

// f.i = 2; Compilation error

cout << f.i << endl; // access non-const data member

cout << f.j << endl;

f.print();

// f.print2(); Compilation error

}

3

2

3

2

COMP2012H (Classes) 73

A Member Function Returning a Reference

 Note that we can have a member function which returns a reference.
For example, if a member function returns an integer reference, there
are 4 possibilities.

 1) int & bar();

 Constant object cannot call it; this is for non-constant objects. It returns an
integer reference and hence can be subsequently changed.

 E.g., for a non-constant object ncfoo, we can call ncfoo.bar() = 10;
or i = ncfoo.bar();

 2) const int & bar();

 Constant object cannot call it; this is for non-constant objects. It has to be a
rvalue.

 i = ncfoo.bar(); // good

 ncfoo.bar() = 10; // wrong: compilation error

COMP2012H (Classes) 74

A Member Function Returning a Reference (Cont.)

 3) const int & bar() const;

 This is for both constant and non-constant objects (constant object can call it only). It
returns a constant reference and hence can only be rvalue.

 i = cfoo.bar(); // good; or i= ncfoo.bar();

 cfoo.bar() = 10; //wrong; and nor ncfoo.bar() = 10;

 4) int & bar() const;

 A constant function not modifying the object

 If it is for a constant object, it cannot be a lvalue Use the third case above

 If it is for a non-constant object, there is no need to have the keyword const

 To conclude, there is no point in using this.

 In a program, therefore, you can have
 Either first (1) or second (2) for non-constant objects depending on what you want on

the return value (cannot have both in your program); and/or

 The third one (3) for constant objects

 The compiler will make the call depending on whether the object is constant or not.

 So there can be 5 possibilities: 1, 2, 3, (1,3), or (2,3)

COMP2012H (Classes) 75

Summary

 (const) int & foo::bar() (const);

 Can always be rvalue

int & const int &

::bar(); •For non-constant object only

•Can be lvalue

•For non-constant object only

•Cannot be lvalue (can only

be rvalue)

::bar() const; •Constant object can call it, but it

returns a reference which may

be lvalue

•Should put const int &

• No use

•For constant or non-constant

objects

•Cannot be lvalue

COMP2012H (Classes) 76

Composition: Objects as Members of Classes

 Sometimes referred to as a has-a relationship

 A class can have objects of other classes as members

 Example: AlarmClock object with a Time object as a member

 Initializing member objects

 Member initializers pass arguments from the object’s constructor to

member-object constructors

 Before the enclosing class object (host object) is constructed

 If a member initializer is not provided, the member object’s default

constructor will be called implicitly

 Example: Date.h, Date.cpp, Employee.h, Employee.cpp and

composition.cpp

COMP2012H (Classes) 77

The this Pointer

 Every class has a keyword, this

 a pointer whose value is the address of the object

 Value of *this would be the object itself

Function members

Data members

Class Object

this

*this

COMP2012H (Classes) 78

Using this Pointer

 Every object has access to its own address through a pointer

called this (a C++ keyword)

 Objects use the this pointer implicitly or explicitly

 Implicitly when accessing members directly

 Explicitly when using keyword this

 Type of the this pointer (i.e., whether it can be modified or not)

depends on the type of the object and whether the executing member

function is declared const

 Usually used when you want to return the modified object for

concatenation:
foo & foo::bar(){

// manipulate and transform data members

// …

return *this;

}
COMP2012H (Classes) 79

Pointers to Class Objects

 Possible to declare pointers to class objects

 Access with

or

 Call delete to free the memory

t

myHours 12

myMinutes 0

myAMorPM A

myMilTime 0

timePtr

Time * timePtr = &t;

Time * timePtr = new Time(12, 0, ‘A’, 0);

timePtr->getMilTime()

(*timePtr).getMilTime()

delete timePtr; // call destructor

COMP2012H (Classes) 80

Static Variables

 Static variables are put somewhere in memory

 ct has only local scope and can only be accessed within the

function. It is not deleted when the function exits.

int bar(void){

static int ct = 0;

ct++;

return ct;

}

int main(){

// cout << ct; Compilation error

cout << bar() << endl;

cout << bar() << endl;

return 0;

}

Output:

1

2

COMP2012H (Classes) 81

Static Class Members

 Only one copy of a variable or function shared by all objects of

a class

 “Class-wide” information

 A property of the class shared by all instances, not a property of a

specific object of the class

 Declaration begins with keyword static

 May seem like global variables but they have class scope

 Outside the class, they cannot be accessed

COMP2012H (Classes) 82

Static Class Members

 Can be declared public, private or protected

 Primitive (Fundamental-type) static data members

 Initialized by default to 0

 If you want a different initial value, a static data member can be
initialized once (and only once)

 A const static data member of primitive or enum type can be
initialized in its definition in the class definition

 Alternatively, you can also initialize it in file scope

 All non-constant static data members must be defined at file
scope, i.e., outside the body of the class definition

 static data members of class types (i.e., static member objects)
that have default constructors need not be initialized because
their default constructors will be called

COMP2012H (Classes) 83

Static Data and Function Members of a Class

 static member function

 Is a service of the class, not a service of the object of the class

 Exist even when no objects of the class exists

 To access a public static class member when no objects of the
class exist:

 Prefix the class name and the binary scope resolution operator (::) to the
name of the data member

 Example: Employee::count or Employee::getcount()

 Also accessible through any object of that class

 Use the object’s name, the dot operator and the name of the member

 Example: Employee_object.count or
Employee_object.getcount()

 Example: SEmployee.h, SEmployee.cpp, static.cpp

COMP2012H (Classes) 84

Programmer’s View

Employee::getCount()

Employee::count

class Employee

object
object object

COMP2012H (Classes) 85

Constant Static Variable

#include <iostream>

using namespace std;

class foo{

public:

static int getcount();

// static member function cannot have `const' method qualifier

private:

const static int count; // may also be const static int count = 2;

};

// initialization of constant static variable: must be here (file scope); not in main()

const int foo::count = 2;

int foo::getcount(){

cout << count;

}

int main(){

foo::getcount(); // print out 2

foo::getcount(); // print out 2

cout << foo::count; // wrong as 'const int foo::count' is private

return 0;

}

COMP2012H (Classes) 86

static member function

 It cannot access non-static data members or non-static member

functions of the class (because the object may not exist when the

function is called)

 A static member function does not have a this pointer

 static data members and static member functions exist

independently of any objects of a class, i.e., when a static

member function is called, there might not be any objects of its

class in memory

COMP2012H (Classes) 87

