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Topics

 Pointers

 Memory addresses

 Declaration

 Dereferencing a pointer

 Pointers to pointer

 Static vs. dynamic objects

 new and delete

 Struct
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Pointers

 A pointer is a variable used to store the address of a memory 

cell. 

 We can use the pointer to reference this memory cell

100… … 1024 …
Memory address: 1024 1032

…
1020

integer pointer
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Computer Memory

 A variable is in fact a portion of memory to store a 

determined value

 Each variable is assigned a memory slot (the size depends 

on the data type) and the variable’s data is stored there

Variable a’s value, i.e., 100, is 

stored at memory location 1024

100… … 1024 …
Memory address: 1024 1032

int a = 100;

…
1020

a
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Pointer Types

 Pointer

 C++  has pointer types for each type of object

 Pointers to int objects

 Pointers to char objects

 Pointers to user-defined objects

(e.g., RationalNumber)

 Even pointers to pointers

 Pointers to pointers to int objects
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Pointers

 A pointer is a variable which 
contains addresses of other 
variables

 A pointer points to an element or 
an array of a certain type

 Accessing the data at the 
contained address is called 
“dereferencing a pointer” or 
“following a pointer” 

n

(4096)

y

(4100)

x

(4104)

4096

7
pointer
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int main(){

int n=7;

int * y = &n;

}



Address Operator &

 The "address of " operator (&) gives the memory 

address of the variable
 Usage: &variable_name

100… … … …
Memory address: 1024

int a = 100;

//To get the value, use the variable name

cout << a; //prints 100

//To get the memory address, add the address 

//operator before the variable name

cout << &a; //prints 1024

…
1020

a
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Address Operator &

10088 … … …
Memory address: 1024 1032

a

…
1020

b
#include <iostream>

using namespace std;

void main(){

int a, b;

a = 88;

b = 100;

cout << "The address of a is: " << &a << endl;

cout << "The address of b is: " << &b << endl;

} 

Result is:

The address of a is: 1020

The address of b is: 1024
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Pointer Variable

 A pointer variable is a specific box for storing a memory 

address

 Declaration of Pointer variables

type* pointer_name;

//or 

type *pointer_name;

Where type is the type of data pointed to (e.g. int, char, double)
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 The value of pointer p is the address of variable a

 A pointer is also a variable, so it has its own memory address

Pointer Variables

10088 … 1024 …
Memory address: 1024 1032

…
1020

a p

int a = 100;

int *p = &a;

cout << a << " " << &a <<endl;

cout << p << " " << &p <<endl;

Result is:

100 1024

1024 1032
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Dereference Operator *

 We can access to the value stored in the variable pointed to 

by preceding the pointer with the “star” dereference 

operator (*), 

10088 … 1024 …
Memory address: 1024 1032

…
1020

int a = 100;

int *p = &a;

cout << a << endl;

cout << &a << endl;

cout << p << " " << *p << endl;

cout << &p << endl;

Result is:

100

1024

1024 100

1032

a p
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Don’t get confused

 Declaring a pointer means only that it is a pointer: int 
*p;

 Don’t be confused with the dereference operator, which is 
also written with an asterisk (*). They are simply two 

different tasks represented with the same sign

int a = 100, b = 88, c = 8;

int *p1 = &a, *p2, *p3 = &c;

p2 = &b; // p2 points to b

p2 = p1; // p2 points to a

b = *p3; //assign c to b

*p2 = *p3; //assign c to a

cout << a << b << c;

Result is:

888 
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Pointer Example

#include <iostream> 

using namespace std;

int main (){

int value1 = 5, value2 = 15; 

int *p1, *p2; 

p1 = &value1; // p1 = address of value1

p2 = &value2; // p2 = address of value2

*p1 = 10;     // value pointed to by p1=10

*p2 = *p1;    // value pointed to by p2= value

// pointed to by p1

p1 = p2; // p1 = p2 (pointer value copied)

*p1 = 20;     // value pointed to by p1 = 20

cout << "value1==" << value1 << "/ value2==" << value2; 

return 0; 

} 

Result is

value1==10 / value2==20 
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Another Pointer Example

int a = 3;

char s  = ‘z’;

double d = 1.03;

int *pa = &a;

char *ps = &s;

double *pd = &d;

cout << sizeof(pa) << sizeof(*pa)

<< sizeof(&pa) << endl;

cout << sizeof(ps) << sizeof(*ps)

<< sizeof(&ps) << endl;

cout << sizeof(pd) << sizeof(*pd)

<< sizeof(&pd) << endl;
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Traditional Pointer Usage

void IndirectSwap(char *Ptr1, char *Ptr2){

char temp = *Ptr1;

*Ptr1 = *Ptr2;

*Ptr2 = temp;

}

int main() {

char a = 'y';

char b = 'n';

IndirectSwap(&a, &b);

cout << a << b << endl;

return 0;

}
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Pointer vs. Reference

References are an additional name to an 

existing memory location

9x

ref

Pointer:

9x
ref

Reference:

If we wanted something called “ref” to refer to a variable x:
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Pass by Reference: Another Way of Implementation

void IndirectSwap(char& y, char& z) {

char temp = y;

y = z;

z = temp;

}

int main() {

char a = 'y';

char b = 'n';

IndirectSwap(a, b);

cout << a << b << endl;

return 0;

}
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A Pointer Example

The code

void doubleIt(int x, 

int * p)

{

*p = 2 * x;

}

int main(int argc, const 

char * argv[]) 

{

int a = 16;

doubleIt(9, &a);

return 0;

}

Box diagram

Memory Layout

9x

p

(8200)

x 

(8196)

16a

main

doubleIt

p

a 

(8192)
16

9

8192

main

doubleIt

a gets 18
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Pointer vs. Reference

 A pointer needs NOT be initialized while defining, but a reference 
variable should always refer to some other object.  

 A pointer can be assigned a new value to point at a different 
object, but a reference variable always refers to the same object. 
Assigning a reference variable with a new value actually changes 
the value of the referred object.

int * p;  // uninitialized pointer, ok

int m = 10;

int & j = m; //valid, but NOT int &j;

p = &m; //p now points at m

int n = 12;

j = n; // the value of m is set to 12. But j still refers to m, not to n. 

cout << “value of m = “ << m <<endl; //value of m printed is 12

n = 36;

cout << “value of j = “ << j << endl; //value of j printed is 12

p = &n;
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Pointer to Pointer

What is the output?

58 58 58
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More Pointer to Pointer

58 345670 445670 545670 645670

a rp sq

Pointer to 

Pointer to 

pointer to

integer

integer a; Pointer to 

Pointer to

integer

Pointer to

integer
Pointer to 

Pointer to 

pointer to

Pointer to

integerint a = 58;

int *p = &a;

int **q = &p;

int ***r = &q;

int ****s = &r;

q = &a //illegal!

s = &q //illegal! 21COMP2012H (Pointers, dynamic objects and struct)



Pointers and Arrays

The name of an array refers only to the address of 

the first element not the whole array.

1000

1012

1016

1004

1008
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Array Name is a Pointer Constant

#include <iostream>

using namespace std;

int main (){

// Demonstrate array name is a pointer constant

int a[5];

cout << "Address of a[0]: " << &a[0] << endl

<< "Name as pointer: " << a << endl;

return 1;

}

/* result:

Address of a[0]: 0x0065FDE4

Name as pointer: 0x0065FDE4

*/
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Dereference of An Array Name

#include <iostream>

using namespace std;

void main(){

int a[5] = {2,4,6,8,22};

cout << *a << " " 

<< a[0] << " " 

<< *(&a[0]);

} //main

2

4

8

6

22a[4]

a[0]

a[2]

a[1]

a[3]

a

a

This element is 
called a[0] or 

*a
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Multiple Array Pointers

Both a and p are pointers to the same array. 

2 2

4 4

#include <iostream>

using namespace std;

int main(){

int a[5] = {2,4,6,8,22};

int *p = &a[1];

cout << a[0] << " " 

<< p[-1];

cout << a[1] << " " 

<< p[0];

return 1;

} 

2

4

8

6

22a[4]

a[0]

a[2]

a[1]

a[3]

p

P[0]

A[0]
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Pointer Arithmetic

Given a pointer p, p+n refers to the nth element, 

i.e., offset from p by n positions.

2

4

8

6

22

a

a + 2

a + 4

a + 3

a + 1
p

p + 2

p + 3

p - 1

p + 1
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*(a+n) is identical to a[n]

Dereferencing Array Pointers

a[3] or *(a + 3)     

2

4

8

6

22

a

a + 2

a + 4

a + 3

a + 1

a[2] or *(a + 2)

a[1] or *(a + 1)

a[0] or *(a + 0)

a[4] or *(a + 4)
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Array of Pointers & Pointers to Array

1

2

a

b

c

An array of Pointers

p

int a = 1, b = 2, c[] = 

{1,2,3};

int *p[5]; // 2D array

p[0] = &a;

p[1] = &b;

p[2] = c;

int list[5] = {9, 8, 7, 6, 5};

int *P;

P = list;//points to 1st entry

P = &list[0];//points to 1st entry

P = &list[1];//points to 2nd entry

P = list + 1; //points to 2nd entry

9

8

7

6

5

A pointer to an array

1 2 3
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The 2D table and table[0] are of the same address
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int table[2][2] = {{0,1}, {1,2}};

cout << table << endl;

cout << *table << endl;  //same as above

cout << table[0] << endl; // same as above

cout << *table[0] << endl;

cout << table[0][0] << endl; // same as above

cout << **table << end;  // same as above

0xffbff938

0xffbff938

0xffbff938

0

0

0

Output:



NULL pointer

 NULL is a special value that indicates an empty pointer

 If you try to access a NULL pointer, you will get an error

int *p;

p = 0;

cout << p << endl; //prints 0

cout << &p << endl;//prints address of p 

cout << *p << endl;//Error!

COMP2012H (Pointers, dynamic objects and struct) 30



Storing 2D Array in 1D Array by 

Linearization

int twod[3][4] = {{0,1,2,3}, {4,5,6,7}, {8,9,10,11}};

int oned[12];

for(int i=0; i<3; i++){

for(int j=0; j<4 ; j++)

oned[i*4+j] = twod[i][j];

}
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Pointer to 2-Dimensional Arrays

1 2 3 4

table[ 0] or *( table + 0 )

table

5 6 7 8

table[ 1] or *( table + 1 )

table + 1

9 10 11 12

table[ 2] or *( table + 2 )

table + 2

int table[3][4] = {{1,2,3,4}, 

{5,6,7,8},{9,10,11,12}};

for(int i=0; i<3; i++){

for(int j=0; j<4; j++)

cout << *(*(table+i)+j);

cout << endl;

}

*(table[i]+j)

= table[i][j]

What is
**table ?

table+i = 

*(table+i) = 

table[i] = 

&table[i][0] 

refers to 

the address 

of the ith 

row

Get the address of the 1st element of 

the ith row of table, i.e., &table[i][0]

Do NOT put *(table+i+j) because the compiler will mistake it as (i+j) row
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main()

 Note that main() is a function, the parent/mother function of 

all functions called by the program

 The operating system first calls/executes this “function”

 Since it is a function, it can have arguments

 Command line arguments

 Access it through argc and argv

 argc is the number of command line arguments

 argv is an array of character pointers (char * *argv)

 The first argument is always the executable name

33COMP2012H (Pointers, dynamic objects and struct)



#include <iostream>

using namespace std;

int main(int argc, char ** argv){

int i;

for( i = 0; i < argc; i++ )

cout << argv[i] << endl;

return(0);

}

cssu5:> a.out 1 2 3

a.out

1

2

3

cssu5:> a.out hello world guys !

a.out

hello

world

guys

!

Get the number of command-line arguments here

Get the comand strings here, may also
be char * argv[]
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Core Dump

double * aFunc(void) {

double d;

return &d;

}

int main(int argc, 

const char * argv[]) {

double * pd = aFunc();

*pd = 3.14;

return 0;

}

Don’t return pointers (or references) to 
local variables!

Boom!

COMP2012H (Pointers, dynamic objects 
and struct)
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Dynamic Objects



Memory Management

 Static Memory Allocation

 Memory is allocated at compilation time

 Allocation on “stack”

 Dynamic Memory

 Memory is allocated at running time

 Allocation on “heap”

 Stack usage + Heap usage <= total memory available
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Static vs. Dynamic Objects

 Static object

 Memory is acquired  

automatically

 Memory is returned 

automatically when object goes 

out of scope

 E.g., variables as declared in 

function calls

 Dynamic object

 Memory is acquired by program 
with an allocation request

 new operation

 Dynamic objects can exist 
beyond the function in which 
they were allocated

 Object memory is returned by a 
deallocation request

 delete operation

COMP2012H (Pointers, dynamic objects and struct) 38



Memory Allocation: Stack and Heap

{

int a[200];

…

}

int* ptr;

ptr = new int[200];

…

delete [] ptr;

Heap:
new
delete
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Object (variable) creation: New

Syntax

ptr = new SomeType;

where ptr is a pointer of type SomeType

p

Uninitialized int variable

Example

int* p = new int;
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Object (variable) destruction: Delete
Syntax

delete p; 

storage pointed to by p is returned to free store 

and p is now undefined

p

Example
int* p = new int;

*p = 10;

delete p;

10
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New:Creating dynamic arrays

 Syntax

P = new SomeType[Expression];

 Where

 P is a pointer of type SomeType

 Expression is the number of objects to be constructed -- we are 

making an array

 Because of the flexible pointer syntax, P can be considered 

to be an array
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An Example

Dynamic Memory Allocation
 Request for “unnamed” memory from the 

Operating System 

 int *p, n=10;

p = new int;

p = new int[100]; p
new

p
new

p = new int[n]; p
new 
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Memory Allocation Example

Need an array of unknown size
main()

{

cout <<  “How many students? “;

cin   >> n;

int *grades = new int[n];

for(int i=0; i < n; i++){

int mark;

cout << “Input Grade for Student” << (i+1)  << “ ? :”;

cin >> mark;

grades[i] = mark;

}

. . .

printMean( grades, n ); // call a function with dynamic array

. . . 

} 44COMP2012H (Pointers, dynamic objects and struct)



Freeing (or deleting) Memory
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How Does C++ Keep Track of the Size of the Array?

 For each object allocated on the heap, there is a leader 
indicating the size of the array

 The size of the leader is system dependent (usually 4 bytes)

 The pointer points to the first useful element of the array

 At de-allocation (delete [] p), the system peeps into 
the leader and releases the array, including the leader

p

size
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At deletion, p must be at the beginning of 

the array

 Note that at de-allocation, the system will load the size 
immediately before the pointer p
 Therefore, remember to position the pointer to the beginning of the 

array before deletion

 Otherwise, the size will be loaded wrongly

 The following is hence bad programming style which does 
not lead to portable codes:
 delete [] (p+1); 

 delete p[3];  //delete an element

 p++; delete [] p;

 etc.

 Always de-allocate the whole array, not the partial one

 Always de-allocate array on heap; no need to de-allocate 
variables on stack
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Can I delete a NULL pointer?

 It is ok to (repeatedly) delete a NULL pointer.  It does nothing.  Therefore, it 
is not necessary to check whether a pointer is NULL before deletion.

 if (p != NULL) delete p;  // if condition is not  needed

 It is, however, an error to repeatedly delete a non-null pointer:

int * p = new int[10];

delete [] p;

delete [] p; // compilation error: double free error

 Therefore, it is always a good practice to set a pointer to somewhere valid 
(such as NULL) after its deletion:

int * p = new int[10];

delete [] p;

p = NULL; // or somewhere valid, e.g., p = new double[5];

 Note that new[] must be paired with delete [], because they may 
work differently as compared with new and delete (without a squared 
bracket):

int * iptr = new int[100];

delete [] iptr; // should not delete iptr;
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A Simple Dynamic List Example

cout << "Enter list size: ";

int n;

cin >> n;

int *A = new int[n];

if(n<=0){

cout << "bad size" << endl;

return 0;  

}

initialize(A, n, 0);  // initialize the array A with value 0

print(A, n);

A = addElement(A,n,5);  //add an element of value 5 at the end of A

print(A, n);

A = deleteFirst(A,n);  // delete the first element of A and 

// assign the new array back to A (Clumsy statement)

print(A, n);

selectionSort(A, n);  // sort the array (not shown)

print(A, n);

delete [] A;
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Initialize 

void initialize(int list[], int size, int value){

for(int i=0; i<size; i++)

list[i] = value;

}
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print()

void print(int list[], int size) {

cout << "[ ";

for(int i=0; i<size; i++)

cout << list[i] << " ";

cout << "]" << endl;

}
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Delete the first element
// for deleting the first element of the array

int* deleteFirst(int list[], int& size){

if(size <= 1){

if( size) delete list;

size = 0;

return NULL;

}

int* newList = new int [size-1]; // make new array

if(newList==0){

cout << "Memory allocation error for deleteFirst!" << endl;

exit(0);

}

for(int i=0; i<size-1; i++) // copy and delete old array

newList[i] = list[i+1];

delete [] list;

size--;

return newList;

}

COMP2012H (Pointers, dynamic objects and struct) 52



Adding Elements

To alter the original list, one may call

list = addElement( list, size, 100 );

Would like to replace it by:

addElement( list, size, 100);

// for adding a new element to the end of array

// return the newly created array; list array is destroyed

int* addElement(int list[], int& size, int value){

int* newList = new int [size+1]; // make new array

if(newList==0){

cout << "Memory allocation error for addElement!" << endl;

exit(0);

}

for(int i=0; i<size; i++)

newList[i] = list[i];

if(size) delete [] list;

newList[size] = value;

size++;

return newList;

}
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Main program

int main(){

int * A = NULL;

int size = 0;

int i;

for( i = 0; i < 10; i++ )

addElement( A, size, i );

for( i = 0; i < 10; i++ )

cout << A[i] << " ";

cout << endl;

for( i = 0; i < 4; i++ )

deleteFirst( A, size );

for( i = 0; i < 6; i++ )

cout << A[i] << " ";

cout << endl;

return 0;

}

0 1 2 3 4 5 6 7 8 9 

4 5 6 7 8 9 
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Adding Element (version 2): 

Transparent Alteration on list
// for adding a new element to end of array

// list and size are altered directly

void addElement( int * & list, int & size, const int value ){

int * newList = new int [size + 1];

if( newList == NULL ){

cout << "Memory allocation error for addElement!" << endl;

exit(-1);

}

for( int i = 0; i < size; i++ )

newList[ i ] = list[ i ];  // copy over

if( size )

delete [] list;

newList[ size ] = value; // last element takes value

size++;

list = newList;   // this is newly added

return;

}
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Deleting Element (version 2)

void deleteFirst( int * & list, int & size ){

//same as before

...

list = newList;

return;

}
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Dangling Pointer Problem
int *A = new int[5];

for(int i=0; i<5; i++) 

A[i] = i;

int *B = A;

delete [] A;

B[0] = 1; // illegal! Segmentation fault

A

B
0 1 2 3 4

A

B

Locations do not belong to program

—

?
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Memory Leak Problem: Heap memory 

which is impossible to be accessed again

int *A = new int [5];

for(int i=0; i<5; i++) 

A[i] = i;

A = new int [5];

A 0 1 2 3 4

— — — — —

These locations cannot be

accessed by program

A 0 1 2 3 42
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Another Leak Example: 

Returning a dereferenced pointer
 After foo returns the value of the integer, the memory allocated to 

iptr can no longer be accessed.

 How can we fix it?  
 Deallocating the memory before you exit by copying the value to a local 

integer first

 Returning the pointer so as to pass the pointer responsibility to the caller
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#include <iostream>

using namespace std;

int foo(){

int * iptr = new int;

*iptr = 10;

return *iptr;

}

int main(){

int i = foo();

//…

}



Memory Leak

 Memory leak is only for the program execution time

 When your main exits, all the memory allocated in the heap will be 
relinquished by the operating system

 Even so, there are many programs which are not supposed to exit 
(server program, Window OS, monitoring programs, etc)

 Therefore, manage your memory carefully

 De-allocate your memory whenever the objects are no longer needed

 Leak is a SERIOUS bug, even though it is hard to be tested 
and traced

 Usually indicated by ever-increasing memory requirement with the 
execution time of the program

COMP2012H (Pointers, dynamic objects and struct) 60



A Dynamic 2D Array

 A dynamic 2D array is 
an array of pointers to 
save space when not 
all rows of the array 
are full.

 int **table;

32 18 2412

42 141912161113

1811

13 1413

22

table = new int*[6];

…

table[0] = new int[4];

table[1] = new int[7];

table[2] = new int[1];

table[3] = new int[3];

table[4] = new int[2];

table[5] = NULL;

table[0]

table[1]

table[2]

table[3]

table[4]

table[5]

table
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Memory Allocation

int **table;

table = new int*[6];

table[0]= new int[3];

table[1]= new int[1];

table[2]= new int[5];

table[3]= new int[10];

table[4]= new int[2];

table[5]= new int[6];

table[0][0] = 1; table[0][1] = 2; table[0][2] = 3; 

table[1][0] = 4; 

table[2][0] = 5; table[2][1] = 6; table[2][2] = 7; 
table[2][3] = 8; table[2][4] = 9; 

table[4][0] = 10; table[4][1] = 11; 

cout << table[2][5] << endl;
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Memory Deallocation

 Memory leak is a serious bug!

 Each row must be deleted individually

 Be careful to delete each row before deleting the table pointer.

 for(int i=0; i<6; i++)

delete [ ] table[i]; 

delete [ ] table;
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Creating a 2D matrix of size m by n

int m, n;

cin >> m >> n >> endl;

int** mat;

mat = imatrix(m,n);

mat[1][3] = 8;

…

int** imatrix(int nr, int nc) {

int** m;

m = new int*[nr];

for (int i=0;i<nr;i++)

m[i] = new int[nc];

return m;

}
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Constant pointer and constant object
 const int * iptr means that the object being pointed to 

by iptr is constant and cannot be changed

 This is the same as int const * iptr

 You can NEVER do *iptr = 10;

 However, you may do reassignment iptr = bptr;

 int * const iptr means that the pointer is a constant, 

not the object that it points to

 You have to initialize the pointer by int * const iptr = &a;

 Can NEVER have iptr = &b;

 Can have *iptr = 4;
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const
#include <iostream>

using namespace std;

// illustration of static variable

// same as void foo1( int const ** bar )

void foo1( const int ** bar ){

bar[1][1] = 5;  

// change int invalid: Compiler complains

bar[1] = new int[3];  // change int *

return;

}

void foo2( int * const * bar ){

bar[1][1] = 5;  // change int 

bar[1] = new int[3];  

//change int * invalid:Compiler complains

bar = new int * [3];  // change int **

return;

}

void foo3( int ** const bar ){

bar[1][1] = 5;  // change int 

bar[1] = new int[3];  

// change int *

bar = new int * [3];  

// change int ** -- invalid: Compiler 

// complains

return;

}

int main(){

int ** iptr;

int i, j;

iptr = new int * [10];

for( i = 0; i < 10; i++ )

iptr[ i ] = new int [10]; 

for( i = 0; i < 10; i++ )

for( j = 0; i < 10; i++ )

iptr[i][j] = i*j;

foo1( iptr );

foo2( iptr );

foo3( iptr );

return 0;

}



struct



Motivation

 Structures hold data that belong together. 

 Examples:

 Student record

 student id, name, major, gender, start year, …

 Bank account: 

 account number, name, currency, balance, …

 Address book: 

 name, address, telephone number, …

 In database applications, structures are called records.

Remember that an array is a collection of variables of 

same type, a collection of variables of different types 

is a ‘structure’.
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‘Date’ example

* A ‘date’ type: 
n Day  (integer)
n Month (integer)
n Year (integer)

* Example:
struct Date {

int day;
int month;
int year;

} ;

The new composite type “Date”  

structure 

has 3 members.
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Date christmas;

christmas.day  =  25;

christmas.month = 12;

christmas.year = 2003;

Define new variable of type ‘Date’

Access to member variables using dot operator
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‘struct’ definition

struct <struct-type>{

<type> <identifier_list>;

<type> <identifier_list>;
...

} ;

Each identifier

defines a member

of the structure.

It is usually a ‘global’ definition!
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* Example:
struct BankAccount{

string Name;
int AcountNo[10];
double balance;
Date Birthday;

};

* Example:
struct StudentRecord{

string Name;
int Id;
string Dept;
char gender;

};

The “StudentRecord” 

structure has 4 

members.

The “BankAcount” 

structure has simple 

array and structure

types as members.
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‘struct’  usage

* Declaration of a variable of struct type:

<struct-type> <identifier_list>;

* Example:
StudentRecord Student1, Student2;

Student1 and Student2 are variables of
StudentRecord type.

Student1 Student2

Name

Id gender

Dept

Name

Id gender

Dept
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Name

Id gender

Dept

Chan Tai Man

12345            M

COMP

Member access (dot operator)

* The members of a struct type variable are 
accessed with the dot (.) operator:
<struct-variable>.<member_name>;

* Example:
Student1.Name = "Chan Tai Man";

Student1.Id = 12345;

Student1.Dept = "COMP";

Student1.gender = 'M';

cout << "The student is ";

if (Student1.gender = ‘F’){

cout << "Ms. "; 

else

cout << "Mr. ";

}

cout << Student1.Name << endl;

Student1
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Chan Tai Man

12345            M

COMP

* The value of one struct type variable can be 
assigned to another variable of the same 
struct type.

* Example:
Student1.Name = "Chan Tai Man";

Student1.Id = 12345;

Student1.Dept = "COMP";

Student1.gender = 'M';

Student2 = Student1;

Student1

Chan Tai Man

12345            M

COMP

Student2

struct-to-struct assignment
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Example of Nested 

structures

struct Point{ 

double x, y;

};

struct Line{

Point p1, p2;

};

struct Triangle{ 

Point p1, p2, p3;

};

Point P = {4, 11};

Line L;

Triangle T;

(P.x, P.y)

(L.p1.x, L.p1.y)

(L.p2.x, L.p2.y)

(T.p2.x, T.p2.y)

(T.p1.x, T.p1.y)

(T.p3.x, T.p3.y)
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Arrays of structures

* An ordinary array: One type of data

* An array of structs: Multiple types of data in each 
array element.

0      1     2    … 98     99

0      1     2    … 98     99
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* Example:
StudentRecord Class[100];

Class[98].Name = "Chan Tai Man";

Class[98].Id = 12345;

Class[98].Dept = "COMP";

Class[98].gender = 'M';

Class[0] = Class[98];

. . .

0      1     2    … 98     99

Chan Tai Man

12345            M

COMP
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Arrays inside structures

We can use arrays inside structures.

Example:
struct square{

point vertex[4];

};

square sq;

Assign values to Sq using the given square
sq.vertex[0].x = 4;

sq.vertex[0].y = 3;

(4, 3) (10, 3)

(4, 1) (10, 1)

4   3 x   y x   y x   y
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Pointer to Struct

 Declaration of pointer to struct
<struct-type>* <identifier_list>;

 Example:
StudentRecord Student1;

StudentRecord* pStudent2;

Student1.Name = "Bill Gates";
Student1.Id = 666;
Student1.Dept = "Bill";
Student1.gender = 'M';

pStudent2 = &Student1;

(*pStudent2).Id = 444; 

pStudent2->Id = 555; 

pStudent2->gender = ‘!'; 

pStudent2->gender = '?';

Bill Gates

666                M

Bill

Student1

pStudent2

Dot operator for ‘object’

 for ‘pointer’                 
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Struct Initialization and Definition

struct children;  // definition prototype (for node)

struct node{

string str;

children * cptr;

};

struct children{

node * nptr;

children * cptr;

};

int main(){

node nd = {"Hello", NULL};

children chld = {&nd, NULL};

. . .

}
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