H.O.#6
Fall 2015
Gary Chan

Pointers, Dynamic Objects and struct

» Pointers
» Memory addresses
» Declaration
» Dereferencing a pointer

» Pointers to pointer

» Static vs. dynamic objects

» new and delete

» Struct

COMP2012H (Pointers, dynamic objects and struct) 2

Pointers

» A pointer is a variable used to store the address of a memory
cell.

» We can use the pointer to reference this memory cell

Memory address: 1020 1024 1032

integer pointer

COMP2012H (Pointers, dynamic objects and struct) 3

Computer Memory

» A variable is in fact a portion of memory to store a
determined value

» Each variable is assigned a memory slot (the size depends
on the data type) and the variable’s data is stored there

Memory address: 1020 1024 1032

Variable a’s value, i.e., 100, is
int a = 100; stored at memory location 1024

COMP2012H (Pointers, dynamic objects and struct)

Pointer Types

» Pointer
» C++ has pointer types for each type of object
Pointers to 1nt objects
Pointers to char objects
Pointers to user-defined objects
(e.g., RationalNumber)
» Even pointers to pointers

Pointers to pointers to 1nt objects

COMP2012H (Pointers, dynamic objects and struct) 5

Pointers

» A pointer is a variable which
contains addresses of other

variables
» A pointer points to an element or %
an array of a certain type (4104)

» Accessing the data at the
contained address is called v
“dereferencing a pointer” or

“ : o (4100) 4096
following a pointer /

int main () { p0|nter n
(4096) 7
int n=7;
int * y = &n;

}

COMP2012H (Pointers, dynamic objects and struct) 6

Address Operator &

» The"address of" operator (<) gives the memory

address of the variable
» Usage: &variable name

Memory address: 1020 1024

a

int a = 100;

//To get the value, use the variable name
cout << a; //prints 100

//To get the memory address, add the address
//operator before the variable name

cout << &a; //prints 1024

COMP2012H (Pointers, dynamic objects and struct) 7

Address Operator &

Memory address: 1020 1024 1032

#include <iostream>
using namespace std;
vold main () {

int a, b;

a = 88;

b = 100;
cout << "The address of a is: " << &a << endl;

cout << "The address of b is: " << &b << endl;

COMP2012H (Pointers, dynamic objects and struct) 8

Pointer Variable

» A pointer variable is a specific box for storing a memory
address

» Declaration of Pointer variables
type* polnter name;
//or
type *polnter name;

Where type is the type of data pointed to (e.g. int, char, double)

COMP2012H (Pointers, dynamic objects and struct)

Pointer Variables

Memory address: 1020 1024 1032

int a = 100;
int *p = &a;
cout << a << " " K g&a <<Lendl;
cout << p << " " K< &p <<endl;

» The value of pointer p is the address of variable a
» A pointer is also a variable, so it has its own memory address

COMP2012H (Pointers, dynamic objects and struct) 10

Dereference Operator *

» We can access to the value stored in the variable pointed to
by preceding the pointer with the “star” dereference
operator (*),

Memory address: 1020 102 032

int a = 100;

int *p = &a;

cout << a << endl;

cout << &a << endl;

cout << p << " " K< *p << endl;
cout << &p << endl;

COMP2012H (Pointers, dynamic objects and struct) 11

Don’t get confused

» Declaring a pointer means only that it is a pointer: int
*p;

» Don’t be confused with the dereference operator, which is
also written with an asterisk (*). They are simply two
different tasks represented with the same sign

int a = 100, b = 88, ¢ = 8;
int *pl = &a, *p2, *p3 = &c;

p2 = &b; // p2 points to b

p2 = pl; // P2 points to a

b = *p3; //assign ¢ to b Result is:
*p2 = *p3; //assign c to a 888

cout << a << b < ¢c;

COMP2012H (Pointers, dynamic objects and struct) 12

Pointer Example

#include <iostream> :
using namespace std; Resultis
int main () { valuel==10/ value2==20
int valuel = 5, wvalue2 = 15;
int *pl, *p2;
pl = &valuel; // pl = address of valuel
p2 = &value2; // p2 = address of valueZ

*pl = 10; // value pointed to by pl=10
*p2 = *pl; // value pointed to by p2= value
// pointed to by pl
pl = p2; // pl = p2 (pointer value copied)
*pl = 20; // value pointed to by pl = 20
cout << "valuel==" << valuel << "/ value2==" << value2;

return 0O;

COMP2012H (Pointers, dynamic objects and struct) 13

Another Pointer Example

int a = 3;

char s = ‘z';
double d = 1.03;
int *pa = &a;
char *ps = &s;

double *pd = &d;
cout << sizeof (pa) << sizeof (*pa)
<< sizeof (&pa) << endl;
cout << sizeof (ps) << sizeof (*ps)
<< sizeof (&ps) << endl;
cout << sizeof (pd) << sizeof (*pd)
<< sizeof (&pd) << endl;

848
818
888

COMP2012H (Pointers, dynamic objects and struct) 14

Traditional Pointer Usage

vold IndirectSwap (char *Ptrl, char *Ptr2) {
char temp = *Ptrl;
*Ptrl = *Ptr2;
*Ptr2 = temp;

J

int main () {
char a = 'y';
char b = 'n';
IndirectSwap (&a, &b);
cout << a << b << endl;
return O;

COMP2012H (Pointers, dynamic objects and struct) 15

Pointer vs. Reference

References are an additional name to an
existing memory location

If we wanted something called “ref” to refer to a variable x:

Pointer: Reference:
X |9 X109
) ref
ref

COMP2012H (Pointers, dynamic objects and struct) 16

Pass by Reference: Another Way of Implementation

vold IndirectSwap (char& vy, charé& z) |
char temp = yj;
Y = Z2vy
z = temp;

}

int main () {
char a = 'y';
char b = 'n';
IndirectSwap(a, b);
cout << a << b << endl;
return O;

COMP2012H (Pointers, dynamic objects and struct) 17

A Pointer Example

Memory Layout

The code .
- Box diagram
void doublelIt (int x, main
int * p) e
{ 5 |16 (8200) 8192
P= 20X doubleIt
} X 9
int main(int argc, const (81906)
char * argv|[])
{ = 16 main
int a = 16; doubleIt (8192)
doubleIt (9, é&a);
return 0; X 9
}
a gets 18 Je

COMP2012H (Pointers, dynamic objects and struct) 18

Pointer vs. Reference

» A pointer needs NOT be initialized while defining, but a reference
variable should always refer to some other object.

» A pointer can be assigned a new value to point at a different
object, but a reference variable always refers to the same obiject.
Assigning a reference variable with a new value actually changes
the value of the referred object.

int * p; // uninitialized pointer, ok
int m = 10;

int & j = m; //valid, but NOT int &j;
p = &m; //p now points at m

int n = 12;

j = n; // the value of m is set to 12. But j still refers to m, not to n.
cout << “walue of m = “ << m <<endl; //value of m printed is 12

n = 36;

cout << “walue of j = Y << J << endl; //value of j printed is 12

p = &n;

COMP2012H (Pointers, dynamic objects and struct) 19

Pointer to Pointer

/! Local Declarations

int a;
int *p s
int **q;

integer
variable

pointer to

pointer to . L
pointer to integer

integer

234560 287650 287870

// Statements

What is the output?

58 58 58 a=>58;
p=&a;
q=4&p;
cout << a<<"";
cout << Fp<<"y
COMP2012H (Pointers, dynamic objects and struct) cout << Frg << " 20

More Pointer to Pointer

a P g r S

integer a; Pointer to Pointer to Pointer to

integer Pointer to Pointer to
integer pointer to pointer to

integer Pointer to
3 = 58: k integer
P = &ay
*rq = &pi
***r — &q;
****S — &r;
&a //illegal!
& //1illegal!

Pointer to
Pointer to

Pointers and Arrays

The name of an array refers only to the address of
the first element not the whole array.

al 0] <+—— 23
- 1000
aj 1004
a: 2 1008 '
The name of an array Is a
al 3 101> _pointer constant to its first
- element
al 4 1016

a

COMP2012H (Pointers, dynamic objects and struct) 22

#include <iostream>
using namespace std;

int main () {
// Demonstrate array name is a pointer constant

int al[b];
cout << "Address of a[0]:
<< "Name as pointer:

return 1;

" << &a[0] << endl
" << a << endl;

/* result:
Address of a[0]: O0xO0o05FDE4

Name as pointer: 0x0065FDE4
*/

COMP2012H (Pointers, dynamic objects and struct) 23

Dereference of An Array Name

This element is
called a[0] or

*
< #include <iostream>

using namespace std;

void main () {
int a[5] = {2,4,6,8,22};
cout << *a << " "
<< a[0] << "™ "
<< *(&al0]);

} //main

4

Both a and p are pointers to the same array.

#include <iostream>

A[O] using namespace std;
a[0] 5) ' int.main(){
' int a[5] = {2,4,6,8,22};

all] 4 4_. e int *p = &alll;

o —) cout << af[0] << ™ "
a 6 << pl-1];
a[3] P[O] ? cout << af[l] << % 7

- e << p[0];

return 1;

COMP2012H (Pointers, dynamic objects and struct) 25

Given a pointer p, p+n refers to the nth element,
l.e., offset from p by n positions.

a = 2 <+——)p -1
a+1— 4 b
a+ 2= 6 +=—Dp +1
a + 3= 8§ <+=—p t+ 2
a + 4 =—— 22 e—p t 3

COMP2012H (Pointers, dynamic objects and struct) 26

Dereferencing Array Pointers

* (a+n) IS i1dentical to a[n]

COMP2012H (Pointers, dynamic objects and struct)

Array of Pointers & Pointers to Array

An array of Pointers

int a =1, b =2, c[] =
{1,2,3};

int *p[5]; // 2D array

p[0] = &a;

pll] = &b;

pl2] = c;

COMP2012H (Pointers, dynamic objects and struct

A pointer to an array

list[5] = {9, 8, 7, 6, 5};
*P;
list;//points to 1%t entry

&list[0];//points to 1%t entry

= &list[1l];//points to 2" entry

list + 1; //points to 2" entry

28

The 2D table and table[0] are of the same address

int table([2][2] = {{0,1}, {1,2}};

cout << table << endl;

cout << *table << endl; //same as above

cout << table[0] << endl; // same as above
cout << *table[0] << endl;

cout << table[0][0] << endl; // same as above
cout << **table << end; // same as above

Output:
Oxffbff938
Oxffbff938
Oxffbff938
0
0
0

COMP2012H (Pointers, dynamic objects and struct) 29

NULL pointer

» NULL is a special value that indicates an empty pointer
» If you try to access a NULL pointer, you will get an error
int *p;
p = 07
cout << p << endl; //prints O
cout << &p << endl;//prints address of p
cout << *p << endl;//Error!

COMP2012H (Pointers, dynamic objects and struct) 30

Storing 2D Array in 1D Array by
Linearization

int twod[3][4] = {{0,1,2,3}, {4,5,6,7}, {8,9,10,11}};
int oned[12];
for (int i=0; i<3; i++) {
for (int j=0; j<4 ; Jj++)
oned[i*4+j] = twod[i] []j]:;

COMP2012H (Pointers, dynamic objects and struct) 31

table+i =

* (table+1)
table[1i] =
&table[1] [0
refers to
the address
of the ith
row

What is
**table ?

COMP2012H (Pointers, hynamic objects and struct)

]

table
table + 1 table[O] or *(table + 0)

jh BN [AE o
table + 2 table[1] or *(table + 1)

fg
table[2] or *(table + 2)

int table[3]1[4] = {{1,2,3,4},
{5,6,7,8},{9,10,11,12}}; * (table[1]+])
table[i][7]
for(int 1=0; 1<3; 1++) {
for (int 3=0; j<4; Jj++)
cout << *(i(table+' +7)

cout << endl; Y

Get the address of the 15t element of
the ith row of table, i.e., &tablei][0] 32
Do NOT put *(table+i+j) because the compiler will mistake it as (i+j) row

T\

» Note that main () is a function, the parent/mother function of
all functions called by the program

» The operating system first calls /executes this “function”

» Since it is a function, it can have arguments
» Command line arguments
» Access it through argc and argv
» argc is the number of command line arguments
» argv is an array of character pointers (char * *argv)

» The first argument is always the executable name

COMP2012H (Pointers, dynamic objects and struct) 33

#include <iostream>
using namespace std;

Get the number of command-line arguments here

int main(in ch{

\

int 1i; Get the comand strings here, may also
be char * argv[]

for(i = 0; 1 < argc; i++)

cout << argv[i] << endl; cssub:> a.out 1 2 3

a.out
1

2

J 3
cssub:> a.out hello world guys !
a.out

hello

world

guys

return (0) ;

COMP2012H (Pointers, dynamic objects and struct) 34

Core Dump

Don’t return pointers (or references) to
local variables!

double * aFunc (void) {
double d;
return &d;
}
int main(int argc,
const char * argvl[]) {
double * pd = aFunc();
*pd = 3.14;

return 0; “\\\\\\\\\\\\\\
}

COMP2012H (Pointers, dynamic objects
and struct)

Boom!

35

Dynamic Obijects

Memory Management

» Static Memory Allocation

» Memory is allocated at compilation time

» Allocation on “stack”

» Dynamic Memory

» Memory is allocated at running time

» Allocation on “heap”

» Stack usage + Heap usage <= total memory available

COMP2012H (Pointers, dynamic objects and struct) 37

Static vs. Dynamic Objects

» Static object » Dynamic object

» Memory is acquired » Memory is acquired by program

automatically with an allocation request

. new operation
» Memory is returned

» Dynamic objects can exist
beyond the function in which
they were allocated

automatically when object goes

out of scope
» E.g., variables as declared in » Object memory is returned by a

function calls deallocation request

delete operation

COMP2012H (Pointers, dynamic objects and struct) 38

Memory Allocation

Static Dynamic Heap:
Using declarations Using new
and definitions predefined functions | delete
{ int* ptr;
int af200]; ptr = new int[200];
} delete [] ptr;

COMP2012H (Pointers, dynamic objects and struct) 39

Obiject (variable) creation: New

Syntax

ptr = new SomeType;

where ptr is a pointer of type SomeType

Example
int* p = new 1nt;
]
P |

COMP2012H (Pointers, dynamic objects and struct)

40

Obiject (variable) destruction: Delete

Syntax
delete p;

storage pointed to by p 1s returned to free store
and p 1s now undefined

E . .
xample int* p = new 1nt;
*p = 10;
delete p;

DR
P

COMP2012H (Pointers, dynamic objects and struct) 41

New:Creating dynamic arrays

» Syntax

P = new SomeType [Expression];

» Where
P is a pointer of type SomeType

Expression is the number of objects to be constructed -- we are
making an array

» Because of the flexible pointer syntax, P can be considered
to be an array

COMP2012H (Pointers, dynamic objects and struct) 42

Dynamic Memory Allocation

Request for "unnamed” memory from the
Operating System

int *p, n=10;
p = new 1int;

p = new int[100];

P = new int[n];

new

F—
new

B I
new

B I

COMP2012H (Pointers, dynamic objects and struct) 43

Need an array of unknown size

main ()

{
cout << “How many students? “;
cin >> n;
int *grades = new 1nt[n];

for(int 1=0; 1 < n; 1++){
int mark;
cout << “Input Grade for Student” << (1+1) << N ?2 :7;
cin >> mark;
grades[1] = mark;

printMean (grades, n); // call a function with dynamic array

} COI:4P2E)12|:| (Pointers, dynamic objects and struct) 44

BEFORE

-

ptr
BEFORE
ptr 200 integers

COMP2012H (Pointers, dynamic objects and struct) 45

How Does C++ Keep Track of the Size of the Array?

» For each object allocated on the heap, there is a leader
indicating the size of the array
» The size of the leader is system dependent (usually 4 bytes)
» The pointer points to the first useful element of the array

» At de-allocation (delete [] p), the system peeps into
the leader and releases the array, including the leader

COMP2012H (Pointers, dynamic objects and struct) p 46

At deletion, p must be at the beginning of
the array

» Note that at de-allocation, the system will load the size
immediately before the pointer p

» Therefore, remember to position the pointer to the beginning of the
array before deletion

» Otherwise, the size will be loaded wrongly
» The following is hence bad programming style which does
not lead to portable codes:
» delete [] (ptl);
» delete p[3]; //delete an element
» pt+; delete [] p;
» eftc.
» Always de-allocate the whole array, not the partial one

» Always de-allocate array on heap; no need to de-allocate
variables on stack

COMP2012H (Pointers, dynamic objects and struct) a7

Can | delete a NULL pointer?

» It is ok to (repeatedly) delete a NULL pointer. It does nothing. Therefore, it
is not necessary to check whether a pointer is NULL before deletion.

» if (p != NULL) delete p; // if condition is not needed
» It is, however, an error to repeatedly delete a non-null pointer:
int * p = new int[10];
delete [] p;
delete [] p; // compilation error: double free error

» Therefore, it is always a good practice to set a pointer to somewhere valid
(such as NULL) after its deletion:

int * p = new int[10];
delete [] p;
p = NULL; // or somewhere valid, e.g., p = new double[5];

» Note that new[] must be paired with delete [], because they may
work differently as compared with new and delete (without a squared
bracket):

int * iptr = new int[100];
delete [] iptr; // should not delete iptr;

COMP2012H (Pointers, dynamic objects and struct) 48

A Simple Dynamic List Example

cout << "Enter list size: ";
int n;
cin >> n;
int *A = new int[n];
if (n<=0) {
cout << "bad size" << endl;

return 0O;
}
initialize (A, n, 0); // initialize the array A with value O
print (A, n);
A = addElement (A,n,5); //add an element of value 5 at the end of A
print (A, n);
A = deleteFirst(A,n); // delete the first element of A and

// assign the new array back to A (Clumsy statement)

print (A, n);
selectionSort (A, n); // sort the array (not shown)
print (A, n);
delete [] A;

COMP2012H (Pointers, dynamic objects and struct) 49

Initialize

vold initialize(int 1list[], int size, 1int wvalue) {
for(int i1i=0; i<size; 1i++)

list[i] = wvalue;

COMP2012H (Pointers, dynamic objects and struct) 50

vold print(int list[], 1nt size)
cout << "[",
for (int 1=0; i<size; 1i++)
cout << list[i] << "™ ",
cout << "]" << endl;

COMP2012H (Pointers, dynamic objects and struct)

51

Delete the first element

// for deleting the first element of the array
int* deleteFirst(int 1list[], inté& size) {
1f(size <= 1) {
1f(size) delete list;
size = 0;
return NULL;
}

int* newList = new int [size-1]; // make new array

1f (newList==0) {
cout << "Memory allocation error for deleteFirst!" << endl;
ex1it (0) ;

}

for (int i=0; i<size-1; i++) // copy and delete old array
newlList[1] = list[i+1];

delete [] list;

size—--;

return newlList;

COMP2012H (Pointers, dynamic objects and struct) 52

Adding Elements

// for adding a new element to the end of array
// return the newly created array; list array is destroyed
int* addElement (int list[], inté& size, int wvalue) {

int* newList = new int [size+1l]; // make new array

1f (newList==0) {
cout << "Memory allocation error for addElement!" << endl;
exit (0) ;

}

for (int i=0; i<size; i++)

newlList[1] = list[i];
1f(size) delete [] list;
newlList[size] = value;
size++;
return newlList; To alter the original list, one may call
} list = addElement(list, size, 100);

Would like to replace it by:
addElement (list, size, 100);

COMP2012H (Pointers, dynamic objects and struct) 53

Main program

int * A = NULL;
int size = 0;

int 1i;

for(1 = 0; i < 10; 1i++)

addElement (A, size, 1);

for(i = 0; i < 10; i++)
cout << A[i] <« "™ ",
cout << endl;

for(i = 0; 1 < 4; i++)

deleteFirst(A, size);

for(i = 0; 1 < 6; i++)
cout << A[i] <« "™ ",

cout == endd 0123456789
return 0; 456789

}

COMP2012H (Pointers, dynamic objects and struct) 54

Adding Element (version 2):
Transparent Alterationon 11st

// for adding a new element to end of array
// list and size are altered directly
void addElement (int * & list, int & size, const int wvalue) {

int * newlList = new int [size + 17;
if (newlList == NULL) {
cout << "Memory allocation error for addElement!" << endl;

exit(-1);

for(int 1 = 0; i < size; i++)
]

newList[i = list[i 1; // copy over

if(size)
delete [] list;

newlList[size] = value; // last element takes value
Ssize++;

list = newlList; // this is newly added

return;

COMP2012H (Pointers, dynamic objects and struct) 55

Deleting Element (version 2)

volid deleteFirst(int * & list, int & size) {
//same as before

list = newlist;

return;

COMP2012H (Pointers, dynamic objects and struct) 56

Dangling Pointer Problem

int *A = new 1int([5];

for (int 1=0; 1<5; 1i++)
Ali] = 1;

int *B = A;

~ =
i
delete [] A;

B[0] = 1; // illegal! Segmentation fault

Locations do not belong to program

v

~ [
e

L

COMP2012H (Pointers, dynamic objects and struct) 57

Memory Leak Problem: Heap memory
which 1s impossible to be accessed again

int *A = new int [5];
for(int i=0; i<5; i++)
Ali] = 1;

L) [oelz]2]s]4]

A = new int [5]; _
These locations cannot be

accessed by program

v
L [ofrl2]3 4]
I I I I

COMP2012H (Pointers, dynamic objects and struct) 58

Another Leak Example:
Returning a dereferenced pointer

» After foo returns the value of the integer, the memory allocated to
iptr can no longer be accessed.

» How can we fix ite

» Deallocating the memory before you exit by copying the value to a local
integer first

» Returning the pointer so as to pass the pointer responsibility to the caller

#include <iostream>
using namespace std;

int foo() {
int * 1ptr = new 1int;
*1ptr = 10;
return *iptr;

}

int main () {
int i = foo();
// ...

}

COMP2012H (Pointers, dynamic objects and struct) 59

Memory Leak

» Memory leak is only for the program execution time

» When your main exits, all the memory allocated in the heap will be
relinquished by the operating system

» Even so, there are many programs which are not supposed to exit
(server program, Window OS, monitoring programs, etc)

» Therefore, manage your memory carefully
» De-allocate your memory whenever the objects are no longer needed

» Leak is a SERIOUS bug, even though it is hard to be tested
and traced

» Usually indicated by ever-increasing memory requirement with the
execution time of the program

COMP2012H (Pointers, dynamic objects and struct) 60

A dynamic 2D array is
an array of pointers to table. 32/18|12 24

save space when not table[O]
all rows of the array tablel1 13111116 12 4211914
are full. -
table[2] 27
int **table; table[3]
table[4. 13/13/14
table[5
11 18
table = new 1Int*[6]; Yik
table[0] = new 1int[4];
table[l] = new int|[7];
table[2] = new int[1l];
table[3] = new 1int[3];
table[4] = new int[2];
table[5] = NULL;
COMP2012H (Pointers, dynamic objects and struct) 61

Memory Allocation

int **table;

table = new int*[6];

table[0]= new int[3];

table[l]= new int[1l];

table[2]= new 1int[5];

table[3]= new int[10];

table[4]= new 1int[2];

table[5]= new int[6];

table[0][0] = 1; table[0][1] = 2; table[0][2] = 3;
table[1][0] = 4;

table[2][0] = 5; table[2][1l] = 6; table[2][2] = 7;
table[2][3] = 8; table[2][4] = 9;

table[4] [0] 10; tablef4][1] = 11;
cout << table[2][5] << endl;

COMP2012H (Pointers, dynamic objects and struct) 62

Memory Deallocation

» Memory leak is a serious bug!
» Each row must be deleted individually

» Be careful to delete each row before deleting the table pointer.
» for(int 1=0; 1<6; 1++)
delete [] tableli];
delete [] table;

COMP2012H (Pointers, dynamic objects and struct) 63

Creating a 2D matrix of size m by n

int m, n;

cin >> m >> n >> endl;
int** mat;

mat = imatrix(m,n):;
mat[1][3] = 8;

int** imatrix(int nr, int nc) {
int** m;
m = new int*[nr];
for (int i1i=0;i<nr; i++)
m[i] = new int[nc];
return m;

COMP2012H (Pointers, dynamic objects and struct) 64

Constant pointer and constant object

» const int * 1ptr means that the object being pointed to
by iptr is constant and cannot be changed
» This is the same as int const * iptr
» You can NEVER do *iptr = 10;

» However, you may do reassignment iptr = bptr;
» 1nt * const 1iptr means that the pointer is a constant,
not the object that it points to

» You have to initialize the pointer by 1nt * const iptr = &a;
» Can NEVER have iptr = &b;
» Can have *iptr = 4;

COMP2012H (Pointers, dynamic objects and struct) 65

const

void foo3(int ** const bar

) {

#include <iostream>
using namespace std;
// illustration of static variable

// same as void fool(int const ** bar
void fool (const int ** bar) {

)

bar[1][1] = 5;

// change int invalid: Compiler complains
bar[1] new int[3]; // change int *
return;

void foo2(int * const * bar

) {

bar[1][1] 5; // change int
bar[1] new int[3];

//change int * invalid:Compiler complains
bar new int * [3]; // change int **
return;

bar[1][1] = 5; // change int
bar[l] = new int[3];
// change int *
bar = new int * [3];
// change int ** —-- invalid: Compiler
// complains
return;
}
int main () {
int ** iptr;
int i, Jj;
iptr = new int * [10];
for(i = 0; 1 < 10; 1i++)
iptr[1] = new int [10];
for(i = 0; 1 < 10; 1i++)
for(j = 0; 1 < 10; i++)
iptr[i] [§] = i*j;
fool (iptr);
foo2 (iptr);

foo3(iptr);
return O;

COMP2012H (Pointers, dynamic objects and struct)

struct

Motivation

Remember that an array Is a collection of variables of
same type, a collection of variables of different types
IS a ‘structure’.

» Structures hold data that belong together.
» Examples:
» Student record
student id, name, major, gender, start year, ...
» Bank account:

account number, name, currency, balance, ...
» Address book:

name, address, telephone number, ...

» In database applications, structures are called records.

COMP2012H (Pointers, dynamic objects and struct) 68

‘Date’ example

A ‘date’ type:
Day (integer)
Month (integer)
Year (integer)

Example:

Date {

day; .

month; The new composite type “Date”
} yearts structure

has 3 members.

COMP2012H (Pointers, dynamic objects and struct) 69

Date christmas; Define new variable of type ‘Date’

christmas.day = 25;
christmas.month = 12;
christmas.year = 2003;

Access to member variables using dot operator

COMP2012H (Pointers, dynamic objects and struct) 70

‘struct’ definition

<struct-type>{ _ -
<type> <identifier list>; Each identifier

<type> <identifier:list>; defines a member
P of the structure.

It is usually a ‘global’ definition!

COMP2012H (Pointers, dynamic objects and struct) 71

Example:

struct BankAccount{

string Name; The “BankAcount”

int AcountNo[10]; :

double balance; . structure has simple
,oare Birthday; array and structure
Example:) types as members.

struct StudentRecord{
string Name;

ll’lt Id; " ”
string Dept; The “StudentRecord
,, Cchar gender; structure has 4
members.

COMP2012H (Pointers, dynamic objects and struct) 72

Declaration of a variable of struct type:

<struct-type> <identifier list>;

Example:
StudentRecord Studentl, Student2;

Studentl Student?

Studentl and Student2 are variables of
StudentRecord type.

COMP2012H (Pointers, dynamic objects and struct) 73

The members of a struct type variable are
accessed with the dot (.) operator:

<struct-variable>.<member name>;

Example- Studentl
Studentl.Name = "Chan Tai Man";
Studentl.Id = 12345; .
Studentl.Dept = "COMP"; Chan Tai Man
Studentl.gender = 'M';
cout << "The student is "; 12345 M
1f (Studentl.gender = ‘F') { COMP

cout << "Ms. ";
else

cout << "Mr. ";

}
cout << Studentl.Name << endl;

COMP2012H (Pointers, dynamic objects and struct) 74

struct-to-struct assignment

The value of one struct type variable can be

assigned to another variable of the same
struct type.

. Studentl
Example:
Studentl.Name = "Chan Tai Man";
Studentl.Id = 12345;
Studentl.Dept = "COMP";
Studentl.gender = 'M';
Student”? = Studentl;

Student?

COMP2012H (Pointers, dynamic objects and struct) 75

struct Point/{

double x, vy; (P.x, P.y)

bi O
(L.p2.x, L.p2.y)

struct Line({ e

Point pl, pz; (L.pl.x, L.pl.y)]
I
struct Triangle/((T.p2.x, T.p2.y)

Point pl, p2, p3; _
b

2
Point P = {4, 11}; ~ (T.p3.x, T.p3.y)
Line L; P -
. friangle T; (Tpl.x, Tply)

COMP2012H (Pointers, dynamic objects and struct)

An ordinary array: One type of data

0 1 2 98 99
An array of structs: Multiple types of data in each
array element.

EIEIEIE
]

COMP2012H (Pointers, dynamic objects and struct) 77

Example:
StudentRecord Class[100];
Class[98] .Name = "Chan Tai Man";

Class[98] .Id = 12345;
Class[98] .Dept = "COMP";
Class[98] .gender = 'M';

Class[0] = Class[98];

COMP2012H (Pointers, dynamic objects and struct) 78

We can use arrays inside structures.

Example: Mf’) (10,3) -

struct square/{ o A
polnt vertex|[4];

bi ¢ T O

(4,1) - (10,1) =

square sqg;

ASSIgﬂ values to S usmg the glven square
sq.vertex[0] .x = 4;

sgq.vertex[0].y = 3;

COMP2012H (Pointers, dynamic objects and struct) 79

Pointer to Struct

» Declaration of pointer to struct pStudent2
<struct-type>* <identifier list>; \ Student1
» Example:
StudentRecord Studentl;
StudentRecord* pStudent2;

Studentl.Name = "Bill Gates";
Studentl.Id = 066;
Studentl.Dept = "Bi11ll";
Studentl.gender = 'M';

pStudent2 = &Studentl;

(*pStudent?) .Id = 444; Dot operator for ‘object’
pStudent2->Td = 555; - for ‘pointer’
pStudent2->gender| = ‘!';

Student2->gender = '?';

OMP2012H (Pointers, dynamic objects and struct) 80

Struct Initialization and Definition

struct children; // definition prototype (for node)

struct node{
string str;
children * cptr;

s

struct children{
node * nptr;
children * cptr;

s

int main () {
node nd = {"Hello", NULL};
children chld = {&nd, NULL};

}
COMP2012H (Pointers, dynamic objects and struct) 81

