
H.O.#6

Fall 2015

Gary Chan

Pointers, Dynamic Objects and struct

Topics

 Pointers

 Memory addresses

 Declaration

 Dereferencing a pointer

 Pointers to pointer

 Static vs. dynamic objects

 new and delete

 Struct

COMP2012H (Pointers, dynamic objects and struct) 2

Pointers

 A pointer is a variable used to store the address of a memory

cell.

 We can use the pointer to reference this memory cell

100… … 1024 …
Memory address: 1024 1032

…
1020

integer pointer

COMP2012H (Pointers, dynamic objects and struct) 3

Computer Memory

 A variable is in fact a portion of memory to store a

determined value

 Each variable is assigned a memory slot (the size depends

on the data type) and the variable’s data is stored there

Variable a’s value, i.e., 100, is

stored at memory location 1024

100… … 1024 …
Memory address: 1024 1032

int a = 100;

…
1020

a

COMP2012H (Pointers, dynamic objects and struct) 4

Pointer Types

 Pointer

 C++ has pointer types for each type of object

 Pointers to int objects

 Pointers to char objects

 Pointers to user-defined objects

(e.g., RationalNumber)

 Even pointers to pointers

 Pointers to pointers to int objects

COMP2012H (Pointers, dynamic objects and struct) 5

Pointers

 A pointer is a variable which
contains addresses of other
variables

 A pointer points to an element or
an array of a certain type

 Accessing the data at the
contained address is called
“dereferencing a pointer” or
“following a pointer”

n

(4096)

y

(4100)

x

(4104)

4096

7
pointer

6COMP2012H (Pointers, dynamic objects and struct)

int main(){

int n=7;

int * y = &n;

}

Address Operator &

 The "address of " operator (&) gives the memory

address of the variable
 Usage: &variable_name

100… … … …
Memory address: 1024

int a = 100;

//To get the value, use the variable name

cout << a; //prints 100

//To get the memory address, add the address

//operator before the variable name

cout << &a; //prints 1024

…
1020

a

COMP2012H (Pointers, dynamic objects and struct) 7

Address Operator &

10088 … … …
Memory address: 1024 1032

a

…
1020

b
#include <iostream>

using namespace std;

void main(){

int a, b;

a = 88;

b = 100;

cout << "The address of a is: " << &a << endl;

cout << "The address of b is: " << &b << endl;

}

Result is:

The address of a is: 1020

The address of b is: 1024

COMP2012H (Pointers, dynamic objects and struct) 8

Pointer Variable

 A pointer variable is a specific box for storing a memory

address

 Declaration of Pointer variables

type* pointer_name;

//or

type *pointer_name;

Where type is the type of data pointed to (e.g. int, char, double)

COMP2012H (Pointers, dynamic objects and struct) 9

 The value of pointer p is the address of variable a

 A pointer is also a variable, so it has its own memory address

Pointer Variables

10088 … 1024 …
Memory address: 1024 1032

…
1020

a p

int a = 100;

int *p = &a;

cout << a << " " << &a <<endl;

cout << p << " " << &p <<endl;

Result is:

100 1024

1024 1032

COMP2012H (Pointers, dynamic objects and struct) 10

Dereference Operator *

 We can access to the value stored in the variable pointed to

by preceding the pointer with the “star” dereference

operator (*),

10088 … 1024 …
Memory address: 1024 1032

…
1020

int a = 100;

int *p = &a;

cout << a << endl;

cout << &a << endl;

cout << p << " " << *p << endl;

cout << &p << endl;

Result is:

100

1024

1024 100

1032

a p

COMP2012H (Pointers, dynamic objects and struct) 11

Don’t get confused

 Declaring a pointer means only that it is a pointer: int
*p;

 Don’t be confused with the dereference operator, which is
also written with an asterisk (*). They are simply two

different tasks represented with the same sign

int a = 100, b = 88, c = 8;

int *p1 = &a, *p2, *p3 = &c;

p2 = &b; // p2 points to b

p2 = p1; // p2 points to a

b = *p3; //assign c to b

*p2 = *p3; //assign c to a

cout << a << b << c;

Result is:

888

COMP2012H (Pointers, dynamic objects and struct) 12

Pointer Example

#include <iostream>

using namespace std;

int main (){

int value1 = 5, value2 = 15;

int *p1, *p2;

p1 = &value1; // p1 = address of value1

p2 = &value2; // p2 = address of value2

*p1 = 10; // value pointed to by p1=10

*p2 = *p1; // value pointed to by p2= value

// pointed to by p1

p1 = p2; // p1 = p2 (pointer value copied)

*p1 = 20; // value pointed to by p1 = 20

cout << "value1==" << value1 << "/ value2==" << value2;

return 0;

}

Result is

value1==10 / value2==20

COMP2012H (Pointers, dynamic objects and struct) 13

Another Pointer Example

int a = 3;

char s = ‘z’;

double d = 1.03;

int *pa = &a;

char *ps = &s;

double *pd = &d;

cout << sizeof(pa) << sizeof(*pa)

<< sizeof(&pa) << endl;

cout << sizeof(ps) << sizeof(*ps)

<< sizeof(&ps) << endl;

cout << sizeof(pd) << sizeof(*pd)

<< sizeof(&pd) << endl;

COMP2012H (Pointers, dynamic objects and struct) 14

848
818
888

Traditional Pointer Usage

void IndirectSwap(char *Ptr1, char *Ptr2){

char temp = *Ptr1;

*Ptr1 = *Ptr2;

*Ptr2 = temp;

}

int main() {

char a = 'y';

char b = 'n';

IndirectSwap(&a, &b);

cout << a << b << endl;

return 0;

}

15COMP2012H (Pointers, dynamic objects and struct)

Pointer vs. Reference

References are an additional name to an

existing memory location

9x

ref

Pointer:

9x
ref

Reference:

If we wanted something called “ref” to refer to a variable x:

COMP2012H (Pointers, dynamic objects and struct) 16

Pass by Reference: Another Way of Implementation

void IndirectSwap(char& y, char& z) {

char temp = y;

y = z;

z = temp;

}

int main() {

char a = 'y';

char b = 'n';

IndirectSwap(a, b);

cout << a << b << endl;

return 0;

}

17COMP2012H (Pointers, dynamic objects and struct)

A Pointer Example

The code

void doubleIt(int x,

int * p)

{

*p = 2 * x;

}

int main(int argc, const

char * argv[])

{

int a = 16;

doubleIt(9, &a);

return 0;

}

Box diagram

Memory Layout

9x

p

(8200)

x

(8196)

16a

main

doubleIt

p

a

(8192)
16

9

8192

main

doubleIt

a gets 18
COMP2012H (Pointers, dynamic objects and struct) 18

Pointer vs. Reference

 A pointer needs NOT be initialized while defining, but a reference
variable should always refer to some other object.

 A pointer can be assigned a new value to point at a different
object, but a reference variable always refers to the same object.
Assigning a reference variable with a new value actually changes
the value of the referred object.

int * p; // uninitialized pointer, ok

int m = 10;

int & j = m; //valid, but NOT int &j;

p = &m; //p now points at m

int n = 12;

j = n; // the value of m is set to 12. But j still refers to m, not to n.

cout << “value of m = “ << m <<endl; //value of m printed is 12

n = 36;

cout << “value of j = “ << j << endl; //value of j printed is 12

p = &n;

COMP2012H (Pointers, dynamic objects and struct) 19

Pointer to Pointer

What is the output?

58 58 58

20COMP2012H (Pointers, dynamic objects and struct)

More Pointer to Pointer

58 345670 445670 545670 645670

a rp sq

Pointer to

Pointer to

pointer to

integer

integer a; Pointer to

Pointer to

integer

Pointer to

integer
Pointer to

Pointer to

pointer to

Pointer to

integerint a = 58;

int *p = &a;

int **q = &p;

int ***r = &q;

int ****s = &r;

q = &a //illegal!

s = &q //illegal! 21COMP2012H (Pointers, dynamic objects and struct)

Pointers and Arrays

The name of an array refers only to the address of

the first element not the whole array.

1000

1012

1016

1004

1008

22COMP2012H (Pointers, dynamic objects and struct)

Array Name is a Pointer Constant

#include <iostream>

using namespace std;

int main (){

// Demonstrate array name is a pointer constant

int a[5];

cout << "Address of a[0]: " << &a[0] << endl

<< "Name as pointer: " << a << endl;

return 1;

}

/* result:

Address of a[0]: 0x0065FDE4

Name as pointer: 0x0065FDE4

*/

23COMP2012H (Pointers, dynamic objects and struct)

Dereference of An Array Name

#include <iostream>

using namespace std;

void main(){

int a[5] = {2,4,6,8,22};

cout << *a << " "

<< a[0] << " "

<< *(&a[0]);

} //main

2

4

8

6

22a[4]

a[0]

a[2]

a[1]

a[3]

a

a

This element is
called a[0] or

*a

COMP2012H (Pointers, dynamic objects and struct) 24

Multiple Array Pointers

Both a and p are pointers to the same array.

2 2

4 4

#include <iostream>

using namespace std;

int main(){

int a[5] = {2,4,6,8,22};

int *p = &a[1];

cout << a[0] << " "

<< p[-1];

cout << a[1] << " "

<< p[0];

return 1;

}

2

4

8

6

22a[4]

a[0]

a[2]

a[1]

a[3]

p

P[0]

A[0]

25COMP2012H (Pointers, dynamic objects and struct)

Pointer Arithmetic

Given a pointer p, p+n refers to the nth element,

i.e., offset from p by n positions.

2

4

8

6

22

a

a + 2

a + 4

a + 3

a + 1
p

p + 2

p + 3

p - 1

p + 1

26COMP2012H (Pointers, dynamic objects and struct)

*(a+n) is identical to a[n]

Dereferencing Array Pointers

a[3] or *(a + 3)

2

4

8

6

22

a

a + 2

a + 4

a + 3

a + 1

a[2] or *(a + 2)

a[1] or *(a + 1)

a[0] or *(a + 0)

a[4] or *(a + 4)

COMP2012H (Pointers, dynamic objects and struct) 27

Array of Pointers & Pointers to Array

1

2

a

b

c

An array of Pointers

p

int a = 1, b = 2, c[] =

{1,2,3};

int *p[5]; // 2D array

p[0] = &a;

p[1] = &b;

p[2] = c;

int list[5] = {9, 8, 7, 6, 5};

int *P;

P = list;//points to 1st entry

P = &list[0];//points to 1st entry

P = &list[1];//points to 2nd entry

P = list + 1; //points to 2nd entry

9

8

7

6

5

A pointer to an array

1 2 3

28COMP2012H (Pointers, dynamic objects and struct)

The 2D table and table[0] are of the same address

COMP2012H (Pointers, dynamic objects and struct) 29

int table[2][2] = {{0,1}, {1,2}};

cout << table << endl;

cout << *table << endl; //same as above

cout << table[0] << endl; // same as above

cout << *table[0] << endl;

cout << table[0][0] << endl; // same as above

cout << **table << end; // same as above

0xffbff938

0xffbff938

0xffbff938

0

0

0

Output:

NULL pointer

 NULL is a special value that indicates an empty pointer

 If you try to access a NULL pointer, you will get an error

int *p;

p = 0;

cout << p << endl; //prints 0

cout << &p << endl;//prints address of p

cout << *p << endl;//Error!

COMP2012H (Pointers, dynamic objects and struct) 30

Storing 2D Array in 1D Array by

Linearization

int twod[3][4] = {{0,1,2,3}, {4,5,6,7}, {8,9,10,11}};

int oned[12];

for(int i=0; i<3; i++){

for(int j=0; j<4 ; j++)

oned[i*4+j] = twod[i][j];

}

COMP2012H (Pointers, dynamic objects and struct) 31

Pointer to 2-Dimensional Arrays

1 2 3 4

table[0] or *(table + 0)

table

5 6 7 8

table[1] or *(table + 1)

table + 1

9 10 11 12

table[2] or *(table + 2)

table + 2

int table[3][4] = {{1,2,3,4},

{5,6,7,8},{9,10,11,12}};

for(int i=0; i<3; i++){

for(int j=0; j<4; j++)

cout << *(*(table+i)+j);

cout << endl;

}

*(table[i]+j)

= table[i][j]

What is
**table ?

table+i =

*(table+i) =

table[i] =

&table[i][0]

refers to

the address

of the ith

row

Get the address of the 1st element of

the ith row of table, i.e., &table[i][0]

Do NOT put *(table+i+j) because the compiler will mistake it as (i+j) row

32COMP2012H (Pointers, dynamic objects and struct)

main()

 Note that main() is a function, the parent/mother function of

all functions called by the program

 The operating system first calls/executes this “function”

 Since it is a function, it can have arguments

 Command line arguments

 Access it through argc and argv

 argc is the number of command line arguments

 argv is an array of character pointers (char * *argv)

 The first argument is always the executable name

33COMP2012H (Pointers, dynamic objects and struct)

#include <iostream>

using namespace std;

int main(int argc, char ** argv){

int i;

for(i = 0; i < argc; i++)

cout << argv[i] << endl;

return(0);

}

cssu5:> a.out 1 2 3

a.out

1

2

3

cssu5:> a.out hello world guys !

a.out

hello

world

guys

!

Get the number of command-line arguments here

Get the comand strings here, may also
be char * argv[]

34COMP2012H (Pointers, dynamic objects and struct)

Core Dump

double * aFunc(void) {

double d;

return &d;

}

int main(int argc,

const char * argv[]) {

double * pd = aFunc();

*pd = 3.14;

return 0;

}

Don’t return pointers (or references) to
local variables!

Boom!

COMP2012H (Pointers, dynamic objects
and struct)

35

Dynamic Objects

Memory Management

 Static Memory Allocation

 Memory is allocated at compilation time

 Allocation on “stack”

 Dynamic Memory

 Memory is allocated at running time

 Allocation on “heap”

 Stack usage + Heap usage <= total memory available

COMP2012H (Pointers, dynamic objects and struct) 37

Static vs. Dynamic Objects

 Static object

 Memory is acquired

automatically

 Memory is returned

automatically when object goes

out of scope

 E.g., variables as declared in

function calls

 Dynamic object

 Memory is acquired by program
with an allocation request

 new operation

 Dynamic objects can exist
beyond the function in which
they were allocated

 Object memory is returned by a
deallocation request

 delete operation

COMP2012H (Pointers, dynamic objects and struct) 38

Memory Allocation: Stack and Heap

{

int a[200];

…

}

int* ptr;

ptr = new int[200];

…

delete [] ptr;

Heap:
new
delete

COMP2012H (Pointers, dynamic objects and struct) 39

Object (variable) creation: New

Syntax

ptr = new SomeType;

where ptr is a pointer of type SomeType

p

Uninitialized int variable

Example

int* p = new int;

COMP2012H (Pointers, dynamic objects and struct) 40

Object (variable) destruction: Delete
Syntax

delete p;

storage pointed to by p is returned to free store

and p is now undefined

p

Example
int* p = new int;

*p = 10;

delete p;

10

COMP2012H (Pointers, dynamic objects and struct) 41

New:Creating dynamic arrays

 Syntax

P = new SomeType[Expression];

 Where

 P is a pointer of type SomeType

 Expression is the number of objects to be constructed -- we are

making an array

 Because of the flexible pointer syntax, P can be considered

to be an array

COMP2012H (Pointers, dynamic objects and struct) 42

An Example

Dynamic Memory Allocation
 Request for “unnamed” memory from the

Operating System

 int *p, n=10;

p = new int;

p = new int[100]; p
new

p
new

p = new int[n]; p
new

COMP2012H (Pointers, dynamic objects and struct) 43

Memory Allocation Example

Need an array of unknown size
main()

{

cout << “How many students? “;

cin >> n;

int *grades = new int[n];

for(int i=0; i < n; i++){

int mark;

cout << “Input Grade for Student” << (i+1) << “ ? :”;

cin >> mark;

grades[i] = mark;

}

. . .

printMean(grades, n); // call a function with dynamic array

. . .

} 44COMP2012H (Pointers, dynamic objects and struct)

Freeing (or deleting) Memory

COMP2012H (Pointers, dynamic objects and struct) 45

How Does C++ Keep Track of the Size of the Array?

 For each object allocated on the heap, there is a leader
indicating the size of the array

 The size of the leader is system dependent (usually 4 bytes)

 The pointer points to the first useful element of the array

 At de-allocation (delete [] p), the system peeps into
the leader and releases the array, including the leader

p

size

46COMP2012H (Pointers, dynamic objects and struct)

At deletion, p must be at the beginning of

the array

 Note that at de-allocation, the system will load the size
immediately before the pointer p
 Therefore, remember to position the pointer to the beginning of the

array before deletion

 Otherwise, the size will be loaded wrongly

 The following is hence bad programming style which does
not lead to portable codes:
 delete [] (p+1);

 delete p[3]; //delete an element

 p++; delete [] p;

 etc.

 Always de-allocate the whole array, not the partial one

 Always de-allocate array on heap; no need to de-allocate
variables on stack

47COMP2012H (Pointers, dynamic objects and struct)

Can I delete a NULL pointer?

 It is ok to (repeatedly) delete a NULL pointer. It does nothing. Therefore, it
is not necessary to check whether a pointer is NULL before deletion.

 if (p != NULL) delete p; // if condition is not needed

 It is, however, an error to repeatedly delete a non-null pointer:

int * p = new int[10];

delete [] p;

delete [] p; // compilation error: double free error

 Therefore, it is always a good practice to set a pointer to somewhere valid
(such as NULL) after its deletion:

int * p = new int[10];

delete [] p;

p = NULL; // or somewhere valid, e.g., p = new double[5];

 Note that new[] must be paired with delete [], because they may
work differently as compared with new and delete (without a squared
bracket):

int * iptr = new int[100];

delete [] iptr; // should not delete iptr;

COMP2012H (Pointers, dynamic objects and struct) 48

A Simple Dynamic List Example

cout << "Enter list size: ";

int n;

cin >> n;

int *A = new int[n];

if(n<=0){

cout << "bad size" << endl;

return 0;

}

initialize(A, n, 0); // initialize the array A with value 0

print(A, n);

A = addElement(A,n,5); //add an element of value 5 at the end of A

print(A, n);

A = deleteFirst(A,n); // delete the first element of A and

// assign the new array back to A (Clumsy statement)

print(A, n);

selectionSort(A, n); // sort the array (not shown)

print(A, n);

delete [] A;

COMP2012H (Pointers, dynamic objects and struct) 49

Initialize

void initialize(int list[], int size, int value){

for(int i=0; i<size; i++)

list[i] = value;

}

COMP2012H (Pointers, dynamic objects and struct) 50

print()

void print(int list[], int size) {

cout << "[";

for(int i=0; i<size; i++)

cout << list[i] << " ";

cout << "]" << endl;

}

COMP2012H (Pointers, dynamic objects and struct) 51

Delete the first element
// for deleting the first element of the array

int* deleteFirst(int list[], int& size){

if(size <= 1){

if(size) delete list;

size = 0;

return NULL;

}

int* newList = new int [size-1]; // make new array

if(newList==0){

cout << "Memory allocation error for deleteFirst!" << endl;

exit(0);

}

for(int i=0; i<size-1; i++) // copy and delete old array

newList[i] = list[i+1];

delete [] list;

size--;

return newList;

}

COMP2012H (Pointers, dynamic objects and struct) 52

Adding Elements

To alter the original list, one may call

list = addElement(list, size, 100);

Would like to replace it by:

addElement(list, size, 100);

// for adding a new element to the end of array

// return the newly created array; list array is destroyed

int* addElement(int list[], int& size, int value){

int* newList = new int [size+1]; // make new array

if(newList==0){

cout << "Memory allocation error for addElement!" << endl;

exit(0);

}

for(int i=0; i<size; i++)

newList[i] = list[i];

if(size) delete [] list;

newList[size] = value;

size++;

return newList;

}

COMP2012H (Pointers, dynamic objects and struct) 53

Main program

int main(){

int * A = NULL;

int size = 0;

int i;

for(i = 0; i < 10; i++)

addElement(A, size, i);

for(i = 0; i < 10; i++)

cout << A[i] << " ";

cout << endl;

for(i = 0; i < 4; i++)

deleteFirst(A, size);

for(i = 0; i < 6; i++)

cout << A[i] << " ";

cout << endl;

return 0;

}

0 1 2 3 4 5 6 7 8 9

4 5 6 7 8 9

COMP2012H (Pointers, dynamic objects and struct) 54

Adding Element (version 2):

Transparent Alteration on list
// for adding a new element to end of array

// list and size are altered directly

void addElement(int * & list, int & size, const int value){

int * newList = new int [size + 1];

if(newList == NULL){

cout << "Memory allocation error for addElement!" << endl;

exit(-1);

}

for(int i = 0; i < size; i++)

newList[i] = list[i]; // copy over

if(size)

delete [] list;

newList[size] = value; // last element takes value

size++;

list = newList; // this is newly added

return;

}

COMP2012H (Pointers, dynamic objects and struct) 55

Deleting Element (version 2)

void deleteFirst(int * & list, int & size){

//same as before

...

list = newList;

return;

}

COMP2012H (Pointers, dynamic objects and struct) 56

Dangling Pointer Problem
int *A = new int[5];

for(int i=0; i<5; i++)

A[i] = i;

int *B = A;

delete [] A;

B[0] = 1; // illegal! Segmentation fault

A

B
0 1 2 3 4

A

B

Locations do not belong to program

—

?

COMP2012H (Pointers, dynamic objects and struct) 57

Memory Leak Problem: Heap memory

which is impossible to be accessed again

int *A = new int [5];

for(int i=0; i<5; i++)

A[i] = i;

A = new int [5];

A 0 1 2 3 4

— — — — —

These locations cannot be

accessed by program

A 0 1 2 3 42

COMP2012H (Pointers, dynamic objects and struct) 58

Another Leak Example:

Returning a dereferenced pointer
 After foo returns the value of the integer, the memory allocated to

iptr can no longer be accessed.

 How can we fix it?
 Deallocating the memory before you exit by copying the value to a local

integer first

 Returning the pointer so as to pass the pointer responsibility to the caller

COMP2012H (Pointers, dynamic objects and struct) 59

#include <iostream>

using namespace std;

int foo(){

int * iptr = new int;

*iptr = 10;

return *iptr;

}

int main(){

int i = foo();

//…

}

Memory Leak

 Memory leak is only for the program execution time

 When your main exits, all the memory allocated in the heap will be
relinquished by the operating system

 Even so, there are many programs which are not supposed to exit
(server program, Window OS, monitoring programs, etc)

 Therefore, manage your memory carefully

 De-allocate your memory whenever the objects are no longer needed

 Leak is a SERIOUS bug, even though it is hard to be tested
and traced

 Usually indicated by ever-increasing memory requirement with the
execution time of the program

COMP2012H (Pointers, dynamic objects and struct) 60

A Dynamic 2D Array

 A dynamic 2D array is
an array of pointers to
save space when not
all rows of the array
are full.

 int **table;

32 18 2412

42 141912161113

1811

13 1413

22

table = new int*[6];

…

table[0] = new int[4];

table[1] = new int[7];

table[2] = new int[1];

table[3] = new int[3];

table[4] = new int[2];

table[5] = NULL;

table[0]

table[1]

table[2]

table[3]

table[4]

table[5]

table

COMP2012H (Pointers, dynamic objects and struct) 61

Memory Allocation

int **table;

table = new int*[6];

table[0]= new int[3];

table[1]= new int[1];

table[2]= new int[5];

table[3]= new int[10];

table[4]= new int[2];

table[5]= new int[6];

table[0][0] = 1; table[0][1] = 2; table[0][2] = 3;

table[1][0] = 4;

table[2][0] = 5; table[2][1] = 6; table[2][2] = 7;
table[2][3] = 8; table[2][4] = 9;

table[4][0] = 10; table[4][1] = 11;

cout << table[2][5] << endl;

COMP2012H (Pointers, dynamic objects and struct) 62

Memory Deallocation

 Memory leak is a serious bug!

 Each row must be deleted individually

 Be careful to delete each row before deleting the table pointer.

 for(int i=0; i<6; i++)

delete [] table[i];

delete [] table;

63COMP2012H (Pointers, dynamic objects and struct)

Creating a 2D matrix of size m by n

int m, n;

cin >> m >> n >> endl;

int** mat;

mat = imatrix(m,n);

mat[1][3] = 8;

…

int** imatrix(int nr, int nc) {

int** m;

m = new int*[nr];

for (int i=0;i<nr;i++)

m[i] = new int[nc];

return m;

}

COMP2012H (Pointers, dynamic objects and struct) 64

Constant pointer and constant object
 const int * iptr means that the object being pointed to

by iptr is constant and cannot be changed

 This is the same as int const * iptr

 You can NEVER do *iptr = 10;

 However, you may do reassignment iptr = bptr;

 int * const iptr means that the pointer is a constant,

not the object that it points to

 You have to initialize the pointer by int * const iptr = &a;

 Can NEVER have iptr = &b;

 Can have *iptr = 4;

65COMP2012H (Pointers, dynamic objects and struct)

COMP2012H (Pointers, dynamic objects and struct) 66

const
#include <iostream>

using namespace std;

// illustration of static variable

// same as void foo1(int const ** bar)

void foo1(const int ** bar){

bar[1][1] = 5;

// change int invalid: Compiler complains

bar[1] = new int[3]; // change int *

return;

}

void foo2(int * const * bar){

bar[1][1] = 5; // change int

bar[1] = new int[3];

//change int * invalid:Compiler complains

bar = new int * [3]; // change int **

return;

}

void foo3(int ** const bar){

bar[1][1] = 5; // change int

bar[1] = new int[3];

// change int *

bar = new int * [3];

// change int ** -- invalid: Compiler

// complains

return;

}

int main(){

int ** iptr;

int i, j;

iptr = new int * [10];

for(i = 0; i < 10; i++)

iptr[i] = new int [10];

for(i = 0; i < 10; i++)

for(j = 0; i < 10; i++)

iptr[i][j] = i*j;

foo1(iptr);

foo2(iptr);

foo3(iptr);

return 0;

}

struct

Motivation

 Structures hold data that belong together.

 Examples:

 Student record

 student id, name, major, gender, start year, …

 Bank account:

 account number, name, currency, balance, …

 Address book:

 name, address, telephone number, …

 In database applications, structures are called records.

Remember that an array is a collection of variables of

same type, a collection of variables of different types

is a ‘structure’.

COMP2012H (Pointers, dynamic objects and struct) 68

‘Date’ example

* A ‘date’ type:
n Day (integer)
n Month (integer)
n Year (integer)

* Example:
struct Date {

int day;
int month;
int year;

} ;

The new composite type “Date”

structure

has 3 members.

COMP2012H (Pointers, dynamic objects and struct) 69

Date christmas;

christmas.day = 25;

christmas.month = 12;

christmas.year = 2003;

Define new variable of type ‘Date’

Access to member variables using dot operator

COMP2012H (Pointers, dynamic objects and struct) 70

‘struct’ definition

struct <struct-type>{

<type> <identifier_list>;

<type> <identifier_list>;
...

} ;

Each identifier

defines a member

of the structure.

It is usually a ‘global’ definition!

COMP2012H (Pointers, dynamic objects and struct) 71

* Example:
struct BankAccount{

string Name;
int AcountNo[10];
double balance;
Date Birthday;

};

* Example:
struct StudentRecord{

string Name;
int Id;
string Dept;
char gender;

};

The “StudentRecord”

structure has 4

members.

The “BankAcount”

structure has simple

array and structure

types as members.

COMP2012H (Pointers, dynamic objects and struct) 72

‘struct’ usage

* Declaration of a variable of struct type:

<struct-type> <identifier_list>;

* Example:
StudentRecord Student1, Student2;

Student1 and Student2 are variables of
StudentRecord type.

Student1 Student2

Name

Id gender

Dept

Name

Id gender

Dept

COMP2012H (Pointers, dynamic objects and struct) 73

Name

Id gender

Dept

Chan Tai Man

12345 M

COMP

Member access (dot operator)

* The members of a struct type variable are
accessed with the dot (.) operator:
<struct-variable>.<member_name>;

* Example:
Student1.Name = "Chan Tai Man";

Student1.Id = 12345;

Student1.Dept = "COMP";

Student1.gender = 'M';

cout << "The student is ";

if (Student1.gender = ‘F’){

cout << "Ms. ";

else

cout << "Mr. ";

}

cout << Student1.Name << endl;

Student1

COMP2012H (Pointers, dynamic objects and struct) 74

Chan Tai Man

12345 M

COMP

* The value of one struct type variable can be
assigned to another variable of the same
struct type.

* Example:
Student1.Name = "Chan Tai Man";

Student1.Id = 12345;

Student1.Dept = "COMP";

Student1.gender = 'M';

Student2 = Student1;

Student1

Chan Tai Man

12345 M

COMP

Student2

struct-to-struct assignment

COMP2012H (Pointers, dynamic objects and struct) 75

Example of Nested

structures

struct Point{

double x, y;

};

struct Line{

Point p1, p2;

};

struct Triangle{

Point p1, p2, p3;

};

Point P = {4, 11};

Line L;

Triangle T;

(P.x, P.y)

(L.p1.x, L.p1.y)

(L.p2.x, L.p2.y)

(T.p2.x, T.p2.y)

(T.p1.x, T.p1.y)

(T.p3.x, T.p3.y)

COMP2012H (Pointers, dynamic objects and struct) 76

Arrays of structures

* An ordinary array: One type of data

* An array of structs: Multiple types of data in each
array element.

0 1 2 … 98 99

0 1 2 … 98 99

COMP2012H (Pointers, dynamic objects and struct) 77

* Example:
StudentRecord Class[100];

Class[98].Name = "Chan Tai Man";

Class[98].Id = 12345;

Class[98].Dept = "COMP";

Class[98].gender = 'M';

Class[0] = Class[98];

. . .

0 1 2 … 98 99

Chan Tai Man

12345 M

COMP

COMP2012H (Pointers, dynamic objects and struct) 78

Arrays inside structures

We can use arrays inside structures.

Example:
struct square{

point vertex[4];

};

square sq;

Assign values to Sq using the given square
sq.vertex[0].x = 4;

sq.vertex[0].y = 3;

(4, 3) (10, 3)

(4, 1) (10, 1)

4 3 x y x y x y
COMP2012H (Pointers, dynamic objects and struct) 79

Pointer to Struct

 Declaration of pointer to struct
<struct-type>* <identifier_list>;

 Example:
StudentRecord Student1;

StudentRecord* pStudent2;

Student1.Name = "Bill Gates";
Student1.Id = 666;
Student1.Dept = "Bill";
Student1.gender = 'M';

pStudent2 = &Student1;

(*pStudent2).Id = 444;

pStudent2->Id = 555;

pStudent2->gender = ‘!';

pStudent2->gender = '?';

Bill Gates

666 M

Bill

Student1

pStudent2

Dot operator for ‘object’

 for ‘pointer’

COMP2012H (Pointers, dynamic objects and struct) 80

Struct Initialization and Definition

struct children; // definition prototype (for node)

struct node{

string str;

children * cptr;

};

struct children{

node * nptr;

children * cptr;

};

int main(){

node nd = {"Hello", NULL};

children chld = {&nd, NULL};

. . .

}

COMP2012H (Pointers, dynamic objects and struct) 81

