
H.O.#5

Fall 2015

Gary Chan

Functions and File I/O

Topics

 Introduction to functions

 Function and memory

 Passing by value, references, and function pointers

 Passing arrays to functions

 Return by value and references

 Local and global variable scopes

 Recursion

 File I/O

COMP2012H (Functions and file I/O) 2

Introduction to Functions

 A complex problem is often easier to solve by

dividing it into several smaller parts, each of

which can be solved by itself.

 This is called top-down programming.

 These parts are called functions in C++ (also

sometimes called subprograms).

 main() then executes these functions so that

the original problem is solved.

COMP2012H (Functions and file I/O) 3

Advantages of Functions

 Functions separate the concept (what is done)

from the implementation (how it is done).

 Functions make programs easier to understand.

 Functions make programs easier to modify.

 Functions can be called several times in the same

program, allowing the code to be reused.

COMP2012H (Functions and file I/O) 4

Function Input and Output

Function ResultParameters

COMP2012H (Functions and file I/O) 5

C++ Functions

 C++ allows the use of both internal (user-

defined) and external functions.

 External functions (e.g., cin, cout,

rand, etc.) are usually grouped into

specialized libraries (e.g., iostream,

cstdlib, cmath, etc.)

COMP2012H (Functions and file I/O) 6

Mathematical Functions

 #include <cmath>

 double log(double x) natural logarithm

 double log10(double x) base 10 logarithm

 double exp(double x) e to the power x

 double pow(double x, double y) x to the power y

 double sqrt(double x) positive square root of x

 double ceil(double x) smallest integer not less than x

 double floor(double x) largest integer not greater than x

 double sin(double x), cos(double x), tan(double x), etc...

COMP2012H (Functions and file I/O) 7

Functions in a Program

 Every time a function is called, a “stack” is created with a
starting memory address. The return of the function removes the
stack back to the caller

 main is the “mother” function

 C++ programs usually have the following form:

// include statements

// function prototypes

// main() function

// user-defined functions

8COMP2012H (Functions and file I/O)

Functions & Memory

 Every function needs a place to
store its local variables.
Collectively, this storage is
called the stack

 This storage (memory aka
“RAM”) is a series of storage
spaces and their numerical
addresses

 Instead of using raw addresses,
we use variables to associate a
name to an address (kept track
by the compiler)

 All of the data/variables for a
particular function call are
located in a stack frame

COMP2012H (Functions and file I/O) 9

Memory

location

void aFunc(int x, int y) {

double d1, d2;

int i;

}

x

y

d2

d1

i

Functions & Memory (cont)
 When a function is called, a new stack frame with a starting address is set

aside

 Parameters and return values are passed by copy (ie, they’re copied into and
out of the stack frame)

 When a function finishes, all its stack frame is reclaimed

void aFunc(int x, int y) {

double d1 = x + y;

}

int main(int argc,

const char ** argv) {

int x = 7;

aFunc(1, 2);

aFunc(2, 3);

return 0;

}

COMP2012H (Functions and file I/O) 10

x

y

d1

x 7

aFunc

main

Function Prototype

 The function prototype declares the interface, or input and output
parameters of the function, leaving the implementation for the
function definition.

 The function prototype or declaration has the following syntax:

<type> <function name>(<type list>);

 Example: A function that prints the card (J) given the card
number (11) as input:

void printcard(int);

(This is a void function - a function that does not return anything.)

 You can write a function prototype anywhere in your program

 You can write a function prototype many times in your program

11COMP2012H (Functions and file I/O)

return and exit

 A function may return values to its environment
 return

 exit

 return returns a value to the caller function
 return(-1), return(i+j), etc.
 Control is given to the caller
 Memory as occupied by the function is reclaimed
 In main(), calling return basically exits the program (returns to

the caller which is the operating system)

 exit returns control and value directly to the operating
system
 exit(-1), exit(i+j), etc.
 Usually in case of error or you want to exit the program early without

going back to main()
 The whole program exits and the whole memory space is reclaimed by

the OS
 The return code may be used to signal to the OS on the state/error

encountered before exiting

12COMP2012H (Functions and file I/O)

Function Definition

 The function definition can be placed anywhere in the program
after the function prototypes.

 You can place a function definition in front of main(). In this

case there is no need to provide a function prototype for the
function, since the function is already defined before its use.

 A function definition has following syntax:

<type> <function name>(<parameter list>){

<local declarations>

<sequence of statements>

}

13COMP2012H (Functions and file I/O)

Function Call

 A function call has the following syntax:

<function name>(<parameter list>)

 There is a one-to-one correspondence between the parameters in a

function call and the parameters in the function definition.

COMP2012H (Functions and file I/O) 14

Functions

 A function returns a single result (assuming the function is not a void function)

 The return code usually signals whether an operation is successful or not, or indicates
the exit condition

 If multiple parameters need to be modified, use passing by reference (later)

 One of the statements in the function body should have the form:

return <expression>;

 The value passed back by return should be of the same type as the return type
of the function.

COMP2012H (Functions and file I/O) 15

Printing Cards

 The main() program which calls printcard()

#include <iostream>
using namespace std;
void printcard(int); // function prototype
int main(){

int c1, c2, c3, c4, c5;
// pick cards
. . .
// print cards
printcard(c1);
printcard(c2);
printcard(c3);
printcard(c4);
printcard(c5);
// find score
// print score

}

COMP2012H (Functions and file I/O) 16

Printing Cards

 A function that prints the card (J) given the card number (11) as
input:

void printcard(int cardnum){

if(cardnum==1)

cout << "A";

else if(cardnum>=2 && cardnum<=10)

cout << cardnum;

else if(cardnum==11)

cout << "J";

else if(cardnum==12)

cout << "Q";

else if(cardnum==13)

cout << "K";

}

COMP2012H (Functions and file I/O) 17

Absolute Value

#include <iostream>

using namespace std;

int absolute(int); // function prototype for absolute()

int main(){

int x, y, diff;

cout << "Enter two integers (separated by a blank): ";

cin >> x >> y;

diff = absolute(x - y);

cout << "The absolute difference between " << x

<< " and " << y << " is: " << diff << endl;

return 0;

}

// Define a function to take absolute value of an integer

int absolute(int x){

if (x >= 0) return x;

else return -x;

}

COMP2012H (Functions and file I/O) 18

Absolute Value (alternative)

 Note that it is possible to omit the function prototype if the function is
placed before it is called.

#include <iostream>

using namespace std;

inline int absolute(int x){

if (x >= 0) return x;

else return -x;

}

int main(){

int x, y, diff;

cout << "Enter two integers (separated by a blank): ";

cin >> x >> y;

diff = absolute(x - y);

cout << "The absolute difference between " << x

<< " and " << y << " is: " << diff << endl;

return 0;

}

return((x > 0)? x: -x);

Hint to the compiler to put the function

into the caller codes: Makes codes run

faster

COMP2012H (Functions and file I/O) 19

Adding Numbers

 Consider the following function:

int add(int a, int b){

int result = a+b;

return result;

}

 We might call the function using the syntax:

int main(){

int sum;

sum = add(5, 3);

return 0;

}

 This would result in variable sum being assigned the value 8.

return(a + b);

COMP2012H (Functions and file I/O) 20

Three-Point Distance

#include <iostream>

#include <cmath>

using namespace std;

double dist(double, double, double, double);

int main(){

double x1, y1, // coordinates for point 1

x2, y2, // coordinates for point 2

x3, y3; // coordinates for point 3

cout << "Enter x & y coordinates of the 1st point: ";

cin >> x1 >> y1;

cout << "Enter x & y coordinates of the 2nd point: ";

cin >> x2 >> y2;

cout << "Enter x & y coordinates of the 3rd point: ";

cin >> x3 >> y3;

COMP2012H (Functions and file I/O) 21

Three-Point Distance

cout <<"The distance from point 1 to 2 is: "

<< dist(x1,y1,x2,y2) << endl;

cout <<"The distance from point 2 to 3 is: "

<< dist(x2,y2,x3,y3) << endl;

cout <<"The distance from point 1 to 3 is: "

<< dist(x1,y1,x3,y3) << endl;

return 0;

}

// Function for computing the distance between 2 pts

double dist(double x1, double y1, double x2, double y2) {

double dist;

dist = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));

return dist;

}

COMP2012H (Functions and file I/O) 22

Pass by Value

 The examples above are all with parameters

passed by value

 An important fact to remember about parameter

passing by value in a function is that changes to

the parameters inside the function body have no

effect outside of the function

 This is due to parameter copying in the call

23COMP2012H (Functions and file I/O)

void f(int x) { cout << “value of x = “ << x << endl;

x = 4; return; }

int main() { int v = 5;

f(v);

cout << “value of v = “ << v << endl;

return 1;}

Output: Value of x =

Value of v =

 When a variable v is passed by value to a function f, its value is
copied to the corresponding variable x in f

 Any changes to the value of x does NOT affect the value of v

5

5

Function Call by Value

24COMP2012H (Functions and file I/O)

Pass by Value: Example 1

 For example, consider the following code:

int sum(int a, int b){

a = a + b;

return a;

}

void main(){

int x, y, z;

x = 3; y = 5;

z = sum(x,y);

}

 What is the value of x, y, and z at the end of the main()

program?

COMP2012H (Functions and file I/O) 25

Pass by Value: Example 1

 The answer: 3, 5, and 8.

 Even though the value of parameter a is changed, the
corresponding value in variable x does not change.
 This is why this is called pass by value.

 The value of the original variable is copied to the parameter,
therefore changes to the value of the parameter do not affect the
original variable.

 In fact, all information in local variables declared within the
function will be lost when the function terminates.

 The only information saved from a pass by value function is in the
return statement.

COMP2012H (Functions and file I/O) 26

Pass by Value: Example 2

 An example to show how the function does not affect a variable
which is used as a parameter:

// Test the effect of a function

// on its parameter

#include <iostream>

using namespace std;

void Increment(int Number) {

Number = Number + 1;

cout << "The parameter Number is: "

<< Number << endl;

}

COMP2012H (Functions and file I/O) 27

Pass by Value: Example 2

void main() {

int I = 10;

//parameter is a variable

Increment(I);

cout << "The variable I is: "

<< I << endl;

//parameter is a constant

Increment(35);

cout << "The variable I is: "

<< I << endl;

//parameter is an expression

Increment(I+26);

cout << "The variable I is: "

<< I << endl;

}

COMP2012H (Functions and file I/O) 28

Pass by Value: Example 2

COMP2012H (Functions and file I/O) 29

Pass by Value: Example 3

// Print the sum and average of two numbers

// Input: two numbers x & y

// Output: sum - the sum of x & y

// average - the average of x & y

#include <iostream>

using namespace std;

void PrintSumAve (double, double);

void main () {

double x, y;

cout << "Enter two numbers: ";

cin >> x >> y;

PrintSumAve (x , y);

}

COMP2012H (Functions and file I/O) 30

Pass by Value: Example 3

void PrintSumAve (double no1, double no2) {

double sum, average;

sum = no1 + no2;

average = sum / 2;

cout << "The sum is " << sum << endl;

cout << "The average is " << average << endl;

}

COMP2012H (Functions and file I/O) 31

Pass by Value: Example 3

 Data areas after call to PrintSumAve() :

COMP2012H (Functions and file I/O) 32

Default Values and Overloading

void foo(int i = 1, int j = 2, int k = 3){

cout << "(i, j, k) = (" << i << ", " << j << ", " << k << ")\n";

}

// compilation error -- clash with the above definition

/* void foo(int i){

cout << " 2 * i = " << 2 * i << endl;

}

*/

void foo(char * cptr){

cout << cptr;

}

int main(){

foo(10);

foo(10, 9);

foo(“abcde\n”);

return 0;

}

cssu5:~> a.out

(i, j, k) = (10, 2, 3)

(i, j, k) = (10, 9, 3)

abcde
COMP2012H (Functions and file I/O) 33

Multiple Outputs: Passing Parameters by Reference

 To have a function with multiple outputs, we have to use pass by
reference.

 Remember: reference is an alias. Both variables, though of
different names, refer to the same memory space

 Reference (address) of parameter is passed to the function, instead
of its value.

 If the function changes the parameter value, the changes will be
reflected in the program calling it.

 How to pass parameters by reference:
<type>& <variable>, ... , <type>& <variable>

34COMP2012H (Functions and file I/O)

 Reference and constant reference variables are commonly used for
parameter passing to a function

 They can also be used as local variables or as class data members

 A reference (or constant reference) variable serves as an alternative name
for an object (an existing memory location)
int m = 10;

int & j = m;

cout <<“value of m = “ << m << endl; //value of m printed is 10

j = 18;

cout << “value of m = “ << m << endl; //value of m printed is 18

 A reference variable must always refer to some other object.

int m = 10;

int & j = m; //valid

int & k; //compilation error

int & k = 1; //cannot assign a non-constant reference to a

// constant: compilation error

const int & n = 10+22; // OK. n is 32.

Reference Variables

35COMP2012H (Functions and file I/O)

 A constant reference variable v refers to an object whose value cannot be

changed through v.

int m = 8;

const int & j = m; //ok

m = 16; //valid and now j is changed to 16

j = 20; //compilation error as j is a constant reference

int & m = m; // compilation error as a reference cannot refers to itself

const int n = 10; // same as int const n = 10;

int & k = n; // cannot assign a reference to a constant variable:

//compilation error as n is a constant

const int & r = n; // ok as both r and n are constants

Constant Reference

36COMP2012H (Functions and file I/O)

Types of Variable and Their Allowed References

 const int x = 10 means that the cell/object x itself is a

constant

 const int & y = x means that the reference y is a

constant

 A non-constant reference CANNOT refer to a constant cell

COMP2012H (Functions and file I/O) 37

const reference (Non-constant) Reference

Object ok ok

Constant object ok X

lvalue and rvalue
 An lvalue (locator value) represents an object that occupies some identifiable location in memory (i.e.

has an address).

 Not all lvalues can be assigned to. Those that can are called modifiable lvalues.

 An lvalue refers to an object that persists beyond a single expression.

 An rvalue is an expression that does not represent an object occupying some identifiable writable
location in memory.

 4 = var; // ERROR, as the left operand 4 is not lvalue

 (var + 1) = 4; // ERROR, as (var+1) is not lvalue

COMP2012H (Functions and file I/O) 38

int globalvar = 20;

int& foo()

{

return globalvar;

}

int main()

{

foo() = 10; // foo returns a lvalue

return 0;

}

const int a = 10; // 'a' is a (non-modifiable)lvalue

a = 10; // but it can't be assigned!

Pass by Reference: An Example

 To show how the function affects a variable which is used as a
parameter:

#include <iostream>

using namespace std;

void Increment(int& Number){

Number = Number + 1;

cout << "The parameter Number: " << Number << endl;
}

int main(){

int I = 10;

Increment(I); // parameter is a variable

cout << "The variable I is: " << I << endl;

return 1;

}

39COMP2012H (Functions and file I/O)

void f(int &x) { cout << “value of x = “ << x << endl;

x = 4; return; }

int main() { int v = 5;

f(v);

cout << “value of v = “ << v << endl;

return 1;}

Output: Value of x =

Value of v =

 When a variable v is passed by reference to a parameter x of

function f, v and the corresponding parameter x refer to the same

variable

 Any changes to the value of x DOES affect the value of v

5

4

Function Call by Reference

40COMP2012H (Functions and file I/O)

Pass by Reference: Example 2

 It is possible to use both pass by reference and pass by value
parameters in the same function.

// Print the sum and average of two numbers

// Input: two numbers x & y

// Output: sum - the sum of x & y

// average - the average of x & y

#include <iostream>

using namespace std;

void SumAve (double, double, double&, double&);

COMP2012H (Functions and file I/O) 41

Pass by Reference: Example 2

void main () {

double x, y, sum, mean;

cout << "Enter two numbers: ";

cin >> x >> y;

SumAve (x, y, sum, mean);

cout << "The sum is " << sum << endl;

cout << "The average is " << mean << endl;

}

void SumAve(double no1, double no2, double& sum,
double& average) {

sum = no1 + no2;

average = sum / 2;

}

Don’t need to put const & here because double is

a primitive type; copying is not expensive

COMP2012H (Functions and file I/O) 42

Pass by Reference: Example 2

 Data areas after call to SumAve:

COMP2012H (Functions and file I/O) 43

Pass by Reference: Example 3

// Compare and sort three integers

#include <iostream>

using namespace std;

void swap (int&, int&);

void main () {

int first, second, third; // input integers

// Read in first, second and third.

cout << "Enter three integers: ";

cin >> first >> second >> third;

if (first > second) swap (first, second);

if (second > third) swap (second, third);

if (first > second) swap (first, second);

cout << "The sorted integers are " << first <<
" , " << second << " , " << third << endl;

}

COMP2012H (Functions and file I/O) 44

Pass by Reference: Example 3

// Function for swapping two integers

void swap (int& x, int& y) {

int temp;

temp = x;

x = y;

y = temp;

}

COMP2012H (Functions and file I/O) 45

void f(int x) { cout << “value of x = “ << x << endl;

x = 4; return; }

main() { int v = 5;

f(v);

cout << “value of v = “ << v << endl;}

Output: Value of x =

Value of v =

 When a variable v is passed by value to a function f, its value is
copied to the corresponding variable x in f

 Any changes to the value of x does NOT affect the value of v

 Call by value is the default mechanism for parameter passing in C++

5

5

Function Call by Value

COMP2012H (Functions and file I/O) 46

void f(int &x) { cout << “value of x = “ << x << endl;

x = 4; return; }

main() { int v = 5;

f(v);

cout << “value of v = “ << v << endl;}

Output: Value of x =

Value of v =

 When a variable v is passed by reference to a parameter x of

function f, v and the corresponding parameter x refer to the same

variable

 Any changes to the value of x DOES affect the value of v

5

4

Function Call by Reference

COMP2012H (Functions and file I/O) 47

void f(const int &x) { cout << “value of x = “ << x << endl;

x = 4; // invalid as x is a rvalue

}

int main() { int v = 5;

f(v);

cout << “value of v = “ << v << endl; return 1;

}

 Passing variable v by constant reference to parameter x of f will
NOT allow any change to the value of x.

 It is appropriate for passing large objects that should not be
changed by the called function.

Function Call by Constant Reference

COMP2012H (Functions and file I/O) 48

 Call by value is appropriate for small objects that should not be changed

by the function

 Because small objects may be copied without too much overhead

 Call by constant reference is appropriate for large objects that should

not be changed by the function

 Large objects should not be copied for efficiency concern

 Call by reference is appropriate for all objects that may be changed by

the function

 An alternative approach is to use pointer, and pass the address of the object into the

function

Usage of Parameter Passing

49COMP2012H (Functions and file I/O)

Final remarks

 Advantage of passing by reference: Large data objects do not

have to be copied

 Saving much CPU time and storage

 Be careful with the parameters though

 You may modify them unintentionally

 To safeguard modification, use const in the parameter instead

 For code clarity and to minimize bug, you should always put const in

front of the variable if you are not going to change the variable in the

function

foo(const int & bar, const int & foobar);

50COMP2012H (Functions and file I/O)

Function Pointer: Passing function name as a

parameter to a function

 The executable of a program gets a certain space in the main-

memory

 To store the compiled codes and variables, and steps to manipulate the

variables in machine codes

 A function name is an address pointing to the execution codes

of the function

 When the function is called, the codes and variables are loaded to the

call stack at execution

 A function name is a pointer which points to the address of the

function

 Therefore, a function name can be passed as a parameter to

another function

COMP2012H (Functions and file I/O) 51

COMP2012H (Functions and file I/O) 52

#include <iostream>

using namespace std;

// put a and b in ascending order

void ascending(double & a, double & b){

if(a > b){

double tmp = a;

a = b;

b = tmp;

}

return;

}

// put a and b in descending order

void descending(double & a, double & b){

if(a < b){

double tmp = a;

a = b;

b = tmp;

}

return;

}

// function pointer

void order(void (*criteria)(double &, double &),

double & a,

double & b) {

(*criteria)(a, b); // same as criteria(a,b);

return;

}

int main(){

double x = 0.7;

double y = 0.5;

order(ascending, x, y);

cout << x << " " << y << endl;

order(descending, x, y);

cout << x << " " << y << endl;

return 1;

}

0.5 0.7
0.7 0.5

Output:

This is a function prototype with

(*) added around function name

Array Element Pass by Value

 Individual array elements can be passed by value or by
reference

 Pass-by-value example:
void printcard(int c) {

if(c==1)

cout << "A";

...

}

void main() {

int cards[5] ;

...

for(int n=0; n<5; n++)

printcard(card[n]);

}

COMP2012H (Functions and file I/O) 53

Array Element Pass by Reference

 Pass-by-reference example:

void swap(int& x, int& y) {

int temp;

if (x > y){

temp = x;

x = y;

y = temp;

}

}

void main() {

int A[10] = {9,8,7,6,5,4,3,2,1,0};

swap(A[3], A[5]);

}

COMP2012H (Functions and file I/O) 54

Array Element Pass by Reference

 Before:

 After:

COMP2012H (Functions and file I/O) 55

Passing Entire Arrays to Functions

 Arrays can be passed to functions in their

entirety.

 All that is required is the address of the first

element and dimensions of the array.

 The remainder of the array will be passed by

reference automatically.

56COMP2012H (Functions and file I/O)

Arrays to Functions: An Example

//Find the largest value in an array

//input: n - number of elements to check

// a[] - array of elements

// output:index to the largest element

#include <iostream>

using namespace std;

int max_element(int n, const int a[]) {

int max_index = 0;

for (int i=1; i<n; i++)

if (a[i] > a[max_index])

max_index = i;

return max_index;

}
int main() {

int A[10] = {9,8,7,6,5,4,10,2,1,0};

cout << A[max_element(10,A)] << endl; return 1;

}

This is passed as a

reference, i.e., not

the entire array is

passed.

The same effect as

int * a

57COMP2012H (Functions and file I/O)

Arrays to Functions: Example 2

//Add a[i] and b[i] and store the sum in c[i]

//Array elements with subscripts ranging from

//0 to size-1 are added element by element

void add_array(int size, const double a[],

const double b[], double c[]){

for (int i=0; i<size; i++)

c[i] = a[i] + b[i];

}

In main():

add_array (5, x, y, z);

May also be written as:

…, const double * a,

const double * b,

const double * c)

to refer to unchangeable

array elements

COMP2012H (Functions and file I/O) 58

Arrays to Functions: Example 2 (Note

that the arrays are not copied)

COMP2012H (Functions and file I/O) 59

Passing Multidimensional Arrays

 How to pass a multidimensional array to a function:

void displayBoard(int b[][4]);

// or simply displayBoard(int [][4]);

void main(){

int board [4][4];

...

displayBoard(board);

...

}

void displayBoard(int b[][4]){

// could also be: void displayBoard(int b[4][4]){

// but NOT: void displayBoard(int b[][]){

...

}

60COMP2012H (Functions and file I/O)

Passing Multi-Dimensional Array

 When passing a multidimensional array to a function, only the size of the
1st dimension is optional, the 2nd, 3rd, etc. dimensions have to be
specified.

 This is because the compiler treats multi-dimensional array as a linear
memory space and calculates address accordingly

 For 2D array, the physical address of int A[i][j] in a statement is
computed at compilation time as A + 4*i*MAX_j + 4*j, which
means that the dimension of each row (MAX_j) has to be known to the
compiler

 For an array index int A[i][j][k] in a statement, the physical
address representation is computed at compilation time as
A + 4 * i * (MAX_j * MAX_k) +

4 * j * MAX_k + k * 4

where MAX_j and MAX_k are the maximum ranges of j and k,
respectively

 As shown above, the dimension sizes are needed for address
computation at compilation time.

 C++ compiler relies on the programmer to make sure that the array
would NOT be accessed out of range and hence will not check whether
i, j, k exceed their dimension sizes during compilation time.

61COMP2012H (Functions and file I/O)

Modify a Variable with Return by Reference
int & bar (int n, int * iptr){

return iptr[n/2];

}

const int & foobar (int n, int * iptr){

return iptr[n/2];

}

int main(){

int j;

int A[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

j = bar(10, A);

cout << j << endl;

bar(10, A) = 10; // address is written into

cout << A[10/2] << endl;

j = foobar(10, A);

cout << j << endl;

foobar(10, A) = 10; // not valid: compiler complains

return 0;

}

5

10

10

62COMP2012H (Functions and file I/O)

Testing and Debugging Functions

 One major advantage of functions is that they can be designed,
coded and tested separately from the rest of the program.

 Use a "driver" program to test a function with several inputs:

void main() {

int i;

for (i = 1; i <= 13; i++){

printcard(i);

cout << " ";

}

}

COMP2012H (Functions and file I/O) 63

Testing and Debugging Functions

 If a yet-to-be written function is needed in testing a program,

replace it with a "stub" for testing.

 A stub has the same interface as the original function, but not the

full implementation.

 Oftentimes, a stub contains just a simple return or cout

command.

void printcard(int i) {

cout << i;

}

COMP2012H (Functions and file I/O) 64

Variable Scope

Scope

The scope of a declaration is the block of code where

the identifier is valid for use.

 A global declaration is made outside the bodies of all functions and outside

the main program. It is normally grouped with the other global declarations

and placed at the beginning of the program file.

 A local declaration is one that is made inside the body of a function. Locally

declared variables cannot be accessed outside of the function they were

declared in.

 It is possible to declare the same identifier name in different parts of the

program.

COMP2012H (Functions and file I/O) 66

int y = 38;

void f(int, int);

void main(){

int z=47;

while(z<400){

int a = 90;

z += a++;

z++;

}

y = 2 * z;

f(1, 2);

}

void f(int s, int t){

int r = 12;

s = r + t;

int i = 27;

s += i;

}

Scope: Example 1

scope of i

scope of r

scope of s & t

scope of a

scope of z

scope of y
scope of f

COMP2012H (Functions and file I/O) 67

Scope: Example 2

 Number in Increment() is the global variable.

#include <iostream>

using namespace std;

int Number; //global variable

void Increment(int Num) {

Num = Num + 1;

cout << Num << endl;

Number = Number + 1;

}

void main() {

Number = 1;

Increment(Number);

cout << Number << endl;

}
Output: 2 2

COMP2012H (Functions and file I/O) 68

Global Variables

 Undisciplined use of global variables may lead to

confusion and debugging difficulties.

 Instead of using global variables in functions, try

passing local variables by reference.

COMP2012H (Functions and file I/O) 69

Scope: Example 3

int Number; //global variable

void Increment(int& Num) {

Num = Num + 1;

cout << Num << endl;

Number = Number + 1;

}

void main() {

Number = 1;

Increment(Number);

cout << Number << endl;

}

 When Increment is called, Num refers to global variable Number

 Number = Number + 1 also refers to global variable
Number.

Output: 2 3

COMP2012H (Functions and file I/O) 70

Scope: Example 4

int Number; //global variable

void Increment(int Number) {

Number = Number + 1;

cout << Number << endl;

}

void main() {

Number = 1;

Increment(Number);

cout << Number << endl;

}

 The scope of the global variable Number does not include
Increment(), because Increment() already has a local parameter of
the same name.

 Thus, the changes made to Number are lost when control returns to
the main program.

This is local variable

Output: 2 1

COMP2012H (Functions and file I/O) 71

Scope: Example 5

int A,B,C,D;
void Two(int A, int B, int& D) {

B = 21; D = 23;

cout <<A<< " " <<B<< " " <<C<< " " <<D<< endl;
}
void One(int A, int B, int& C) {

int D; // Local variable

A = 10; B = 11; C = 12; D = 13;

cout <<A<< " " <<B<< " " <<C<< " " <<D<< endl;

Two(A,B,C);
}
void main() {

A = 1; B = 2; C = 3; D = 4;

One(A,B,C);

cout <<A<< " " <<B<< " " <<C<< " " <<D<< endl;

Two(A,B,C);

cout <<A<< " " <<B<< " " <<C<< " " <<D<< endl;
}

Local variables

COMP2012H (Functions and file I/O) 72

Scope: Example 5

 Output:

10 11 12 13 // from One

10 21 23 23 // from Two

1 2 23 4 // from main

1 21 23 23 // from Two

1 2 23 4 // from main

COMP2012H (Functions and file I/O) 73

Compiler Scope Rule

 Compiler always looks for local variables of the closest

scope first

int A=0, B=1;

void foo(int A){// A is local to foo
A = 100;
return;

}

void bar(int B){// B is local to bar
B = 100;
return;

}

int main(){
int A[10]; // ok
foo(A); //compilation error as A is an array

//and foo takes an integer
bar(B);
cout << B; // print out 1

}

COMP2012H (Functions and file I/O) 74

static Variable

 Static variable is only allocated once and remains within the

scope of the function

void foo(void){

static int i = 0;

i++;

cout << i << endl;

return;

}

int main(void){

for(int j = 0; j < 10; j++)

foo();

return 0;

}

1

2

3

4

5

6

7

8

9

10
COMP2012H (Functions and file I/O) 75

Recursion

Outline

 Recursion definition and techniques

 6 examples

 Factorial

 Exponential function

 Number of digit 0

 Fibonacci number

 Binary search

 Permutation

COMP2012H (Functions and file I/O) 77

Recursive Thinking

 In some problems, it may be natural to define the problem in
terms of the problem itself.

 Recursion is useful for problems that can be represented by
a simpler version of the same problem.

 Example: the factorial function

6! = 6 * 5 * 4 * 3 * 2 * 1

We could write:

6! = 6 * 5!

COMP2012H (Functions and file I/O) 78

Recursion

 Recursion is one way to decompose a task into smaller subtasks. At
least one of the subtasks is a smaller example of the same task.

 A function is defined recursively if it has the following two parts

 An anchor or base case

 The function is defined for one or more specific values of the parameter(s)

 An inductive or recursive case

 The function's value for current parameter(s) is defined in terms of previously
defined function values and/or parameter(s)

 Recursive call (also called the recursion step)

 The function launches (calls) a fresh copy of itself to work on the smaller
problem

 Can result in many more recursive calls, as the function keeps dividing each
new problem into two conceptual pieces

 This sequence of smaller and smaller problems must eventually converge on
the base case; otherwise the recursion will continue forever

COMP2012H (Functions and file I/O) 79

Recursion

 Recursion is one way to decompose a task into smaller subtasks.

At least one of the subtasks is a smaller example of the same

task.

 The smallest example of the same task has a non-recursive

solution.

Example: The factorial function

n! = n * (n-1)! and 1! = 1

COMP2012H (Functions and file I/O) 80

Example 1: factorial function

In general, we can express the factorial function as follows:

n! = n * (n-1)!

Is this correct? Well… almost.

The factorial function is only defined for positive integers. So
we should be a bit more precise:

n! = 1 (if n is equal to 1)

n! = n * (n-1)! (if n is larger than 1)

COMP2012H (Functions and file I/O) 81

factorial function

The C++ equivalent of this definition:

int fac(int numb){

if(numb<=1)

return 1;

else

return numb * fac(numb-1);

}

recursion means that a function calls itself

COMP2012H (Functions and file I/O) 82

factorial function

 Assume the number typed is 3, that is, numb=3.

fac(3) :

int fac(int numb){

if(numb<=1)

return 1;

else

return numb * fac(numb-1);

}

3 <= 1 ? No.

fac(3) = 3 * fac(2)

fac(2) :

2 <= 1 ? No.

fac(2) = 2 * fac(1)

fac(1) :

1 <= 1 ? Yes.

return 1

fac(2) = 2 * 1 = 2

return fac(2)

fac(3) = 3 * 2 = 6

return fac(3)

fac(3) has the value 6 83COMP2012H (Functions and file I/O)

factorial function

For certain problems (such as the factorial function), a recursive
solution often leads to short and elegant code. Compare the recursive
solution with the iterative solution:

Iterative solution

int fac(int numb){

int product=1;

while(numb>1){

product *= numb;

numb--;

}

return product;

}

Recursive solution

int fac(int numb){

if(numb<=1)

return 1;

else

return numb*fac(numb-1);

}

COMP2012H (Functions and file I/O) 84

Recursion

To trace recursion, recall that function calls operate as a
stack – the new function is put on top of the caller

We have to pay a price for recursion:

 calling a function consumes more time and memory than adjusting a
loop counter.

 high performance applications (graphic action games, simulations of
nuclear explosions) hardly ever use recursion.

In less demanding applications recursion is an attractive
alternative for iteration (for the right problems!)

COMP2012H (Functions and file I/O) 85

Infinite Loop…

If we use iteration, we must be careful not to create an
infinite loop by accident:

for(int incr=1; incr!=10;incr+=2)

...

int result = 1;

while(result >0){

...

result++;

}

Oops!

Oops!

COMP2012H (Functions and file I/O) 86

Infinite Recursion

Similarly, if we use recursion we must be careful not to
create an infinite chain of function calls:

int fac(int numb){

return numb * fac(numb-1);

}

Or:

int fac(int numb){

if (numb<=1)

return 1;

else

return numb * fac(numb+1);

}

Oops!
No termination

condition

Oops!
COMP2012H (Functions and file I/O) 87

Recursion

We must always make sure that the recursion bottoms out:

 A recursive function must contain at least one non-recursive

branch.

 The recursive calls must eventually lead to a non-recursive

branch.

COMP2012H (Functions and file I/O) 88

Example 2: Exponential Function

 How to write exp(int numb, int power) recursively?

 n^p = n * n^(p-1)

int exp(int numb, int power){

if(power ==0)

return 1;

return numb * exp(numb, power -1);

}

COMP2012H (Functions and file I/O) 89

Example 3: number of zero

 Write a recursive function that counts the number of zero digits in an integer

 zeros(10200) returns 3.

 #zeros(n) = #zeros(n/10) + y, where y is 1 if it is 0, or 0 otherwise

int zeros(int numb){

if(numb==0) // 1 digit (zero/non-zero):

return 1; // bottom out.

else if(numb < 10 && numb > -10)

return 0;

else // > 1 digits: recursion

return zeros(numb/10) + zeros(numb%10);

}
zeros(10200)

zeros(1020) + zeros(0)

zeros(102) + zeros(0) + zeros(0)

zeros(10) + zeros(2) + zeros(0) + zeros(0)

zeros(1) + zeros(0) + zeros(2) + zeros(0) + zeros(0)

COMP2012H (Functions and file I/O) 90

Example 4: Fibonacci numbers

 Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

where each number is the sum of the preceding two.

 Recursive definition:

 F(0) = 0;

 F(1) = 1;

 F(number) = F(number-1)+ F(number-2);

COMP2012H (Functions and file I/O) 91

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Example 2: Fibonacci numbers

//Calculate Fibonacci numbers using recursive function.

//A very inefficient way, but illustrates recursion well

int fib(int number)

{

if (number == 0) return 0;

if (number == 1) return 1;

return (fib(number-1) + fib(number-2));

}

int main(){ // driver function

int inp_number;

cout << "Please enter an integer: ";

cin >> inp_number;

cout << "The Fibonacci number for "<< inp_number

<< " is "<< fib(inp_number)<<endl;

return 0;

}

COMP2012H (Functions and file I/O) 92

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

COMP2012H (Functions and file I/O) 93

Trace a Fibonacci Number

 Assume the input number is 4, that is, num=4:

fib(4):

4 == 0 ? No; 4 == 1? No.

fib(4) = fib(3) + fib(2)

fib(3):

3 == 0 ? No; 3 == 1? No.

fib(3) = fib(2) + fib(1)

fib(2):

2 == 0? No; 2==1? No.

fib(2) = fib(1)+fib(0)

fib(1):

1== 0 ? No; 1 == 1? Yes.

fib(1) = 1;

return fib(1);

int fib(int num)

{

if (num == 0) return 0;

if (num == 1) return 1;

return

(fib(num-1)+fib(num-2));

}

COMP2012H (Functions and file I/O) 94

Trace a Fibonacci Number

fib(0):

0 == 0 ? Yes.

fib(0) = 0;

return fib(0);

fib(2) = 1 + 0 = 1;

return fib(2);

fib(3) = 1 + fib(1)

fib(1):

1 == 0 ? No; 1 == 1? Yes

fib(1) = 1;

return fib(1);

fib(3) = 1 + 1 = 2;

return fib(3)

COMP2012H (Functions and file I/O) 95

Trace a Fibonacci Number

fib(2):

2 == 0 ? No; 2 == 1? No.

fib(2) = fib(1) + fib(0)

fib(1):

1== 0 ? No; 1 == 1? Yes.

fib(1) = 1;

return fib(1);

fib(0):

0 == 0 ? Yes.

fib(0) = 0;

return fib(0);

fib(2) = 1 + 0 = 1;

return fib(2);

fib(4) = fib(3) + fib(2)

= 2 + 1 = 3;

return fib(4);

COMP2012H (Functions and file I/O) 96

A Much More Efficient Implementation:

Fibonacci number w/o recursion
//Calculate Fibonacci numbers iteratively

//much more efficient than the recursive solution

int fib(int num){

int fn; // f[n]

int f2 = 0; // f[n-2]

int f1 = 1; // f[n-1]

if(num == 0)

return 0;

if(num == 1)

return 1;

for(int i = 2; i <= num; i++){

fn = f1 + f2; // f[n] = f[n-1] + f[n-2]

f2 = f1; // f[n-2] <- f[n-1]

f1 = fn; // f[n-1] <- f[n]

}

return fn;

}

COMP2012H (Functions and file I/O) 97

Example 5: Binary Search in a Sorted Array

 Search for an element in an ordered array

 Sequential search

 Binary search

 Binary search

 Compare the search element with the middle

element of the array

 If not equal, then apply binary search to half of

the array (if not empty) where the search element

may be.

98COMP2012H (Functions and file I/O)

Binary Search (driver)

int main() {

const int array_size = 8;

int list[array_size]={1, 2, 3, 5, 7, 10, 14, 17};

int search_value;

cout << "Enter search value: ";

cin >> search_value;

cout << bsearchr(list,0,array_size-1,search_value)

<< endl;

return 0;

}

99COMP2012H (Functions and file I/O)

Binary Search with Recursion

// Searches an ordered array of integers using recursion

int bsearchr(const int data[], // input: array

int first, // input: lower bound

int last, // input: upper bound

int value // input: value to find

)// output: index if found, otherwise return –1

{ int middle = (first + last) / 2;

if (data[middle] == value)

return middle;

else if (first > last)

return -1;

else if (value < data[middle])

return bsearchr(data, first, middle-1, value);

else

return bsearchr(data, middle+1, last, value);

}

100COMP2012H (Functions and file I/O)

Binary Search w/o Recursion

// Searches an ordered array of integers

int bsearch(const int data[], // input: array
int size, // input: array size
int value // input: value to find

){ // output: if found, return the index
// index; otherwise, return -1

int first, last, middle;
first = 0;
last = size - 1;

while (true) {

middle = (first + last) / 2;

if (data[middle] == value)
return middle; // found

else if (first > last)
return -1; // not found

else if (value < data[middle])
last = middle - 1; //lower half

else
first = middle + 1; //upper half

}
}

101COMP2012H (Functions and file I/O)

Recursion General Form

 How to write recursively?

int recur_fn(parameters){

if(stopping condition)

return stopping value;

// other stopping conditions if needed

return function of recur_fn(revised parameters)

}

COMP2012H (Functions and file I/O) 102

Example 6: Permutation
 Generate all the permutation sequences of n numbers

 n! number of sequences

 For n=3: abc, acb, bac, bca, cba, cab

 Let the numbers be labeled as a1 a2 a3 … an

 The permuted sequences are

a1 perm(a2 a3 a4…an),

a2 perm(a1 a3 a4…an),

a3 perm(a2 a1 a4…an),

….

an perm(a2 a3 a4 … a1)

 The above can be implemented in a for loop with a swap function
 Swap the first element with the ith one, so that the ith one is the leading element

 Perform permutation recursively

 Swap ith one back to its original position to start another loop

 (base case) If there is only 1 element, this must be the last element in the
permuted sequence and there is nothing to be permuted. In this case, simply
print out the whole sequence from the beginning of the array to the end

103COMP2012H (Functions and file I/O)

Permutation Codes
template <class T>

inline void swap(T& a, T& b){

// swap a and b

T temp = a;

a = b;

b = temp;

}

// Permutation codes to permute list[k: m]

// simply prints the permuted sequences out list[0: m]

template<class T>

void Perm(T list[], int k, int m){

// generate all permutations of list[k:m]

int i;

if(k == m){ // base case: only 1 element simply print things out

for(i = 0; i <= m; i++) // cout from array index 0

cout << list[i];

cout << endl;

}

else

for(i = k; i <= m; i++){

swap(list[k], list[i]); // swap a[i] as the leading symbol

Perm(list, k+1, m); // permute with one fewer element and print things out

swap(list[k], list[i]); // restore back to the original sequence for the next iteration

}

}

104COMP2012H (Functions and file I/O)

For some simple function, may use #define, e.g.,

#define max(x, y) ((x) > (y)? (x): (y))

// #define mult(x, y)((x)*(y))

Usage
int main(){

char str[] = "abcde";

Perm(str, 2, 4); // permute on “cde”

cout << endl;

Perm(str, 0, 2); // permute on “abc”

}

abcde

abced

abdce

abdec

abedc

abecd

abc

acb

bac

bca

cba

cab

Output:

105COMP2012H (Functions and file I/O)

Recursion vs. Iteration

 Negatives of recursion

 Overhead of repeated function calls

 Creating stacks can be expensive in both processor time and memory space

 Each recursive call causes another copy of the function (actually only the

function’s variables) to be created

 Can consume considerable memory

 Iteration

 Overhead of repeated function calls and extra memory allocation is

removed

COMP2012H (Functions and file I/O) 106

Recursion vs. Iteration

 Most of the problems that can be solved recursively can also be

solved iteratively (nonrecursively)

 A recursive approach is usually chosen in preference to an

iterative approach when

 the recursive approach more naturally mirrors the problem and results in a

program that is easier to understand and debug

 an iterative solution is not apparent

COMP2012H (Functions and file I/O) 107

File I/O

Using Input/Output Files

 A computer file
 is stored on a secondary storage device (e.g., disk)

 is permanent

 can be used to provide input data or receive output data, or both

 must reside in Project directory (not necessarily the same directory as the

.cpp files)

 must be opened before reading it

109COMP2012H (Functions and file I/O)

Using Input/Output Files

 stream - a sequence of characters

 interactive (iostream)

 cin - input stream associated with keyboard

 cout - output stream associated with display

 file (fstream)

 ifstream - defines new input stream (normally associated

with a file)

 ofstream - defines new output stream (normally associated

with a file)

110COMP2012H (Functions and file I/O)

Constructor

 Syntax

fstream(const char *filename, openmode mode);

ifstream(const char *filename, openmode mode);

ofstream(const char *filename, openmode mode);

COMP2012H (Functions and file I/O) 111

Mode Meaning

ios::app append output

ios::ate seek to EOF when opened

ios::binary open the file in binary mode

ios::in open the file for reading

ios::out open the file for writing

ios::trunc overwrite the existing file

File-Related Functions

#include <fstream>

 foo.open(fname)

 connects stream foo to the external file fname

 foo.get(ch)

 Gets the next character from the input stream foo and places it in the
character variable ch

 foo.put(ch)

 Puts the character ch into the output stream foo

 foo.eof()

 tests for end-of-file condition

 foo.close()

 disconnects the stream and closes the file

 foo.is_open()

 Tests whether the file is open

112COMP2012H (Functions and file I/O)

File-Related Functions

#include <fstream>

 foo.flush()

 useful for printing out debugging information

 sometimes programs abort before they have a chance to write their
output buffers to the screen.

 foo.getline(char *buffer, streamsize num)

 foo.getline(char *buffer, streamsize num,

char delim)

 Reads the characters into buffer until

(1) num-1characters have been read

(2) A new line is encountered

(3) An EOF is encountered

(4) Until the character delim is read

113COMP2012H (Functions and file I/O)

Standard Input/Output Streams

 Stream is a sequence of characters

 Working with cin and cout

 Streams convert internal representations to character streams

 >> input operator (extractor)

 << output operator (inserter)

114COMP2012H (Functions and file I/O)

Reading Data >>

 Leading white space skipped

 Newline character <nwln> also skipped

 Until first character is located

cin >> ch;

 Also read character plus white space as a character

 get and put functions

115COMP2012H (Functions and file I/O)

File I/O

 Declare the stream to be processed:

#include <fstream>

ifstream ins; // input stream

ofstream outs; // output stream

 Need to open the files

ins.open(inFile);

outs.open(outFile);

116COMP2012H (Functions and file I/O)

<< and >>: Example 1

 You can read and write integers, doubles, chars, etc. from files just
like cin >> and cout << :

1 #include <iostream>

2 #include <fstream>

3 using namespace std;

4 void main(){

5 ifstream fin;

6 int A[4], r;

7 fin.open("file1.dat");// read data file of four integers

8 for(r=0; r<4; r++) // into array

9 fin >> A[r];

10 fin.close();

11

12 ofstream fout;

13 fout.open("file2.dat"); // write data file

14 for(r=3; r>=0; r--) // with numbers reversed

15 fout << A[r] << ' ';

16 fout.close();

17 }

COMP2012H (Functions and file I/O) 117

File I/O: Example 1

file1.dat:

1 2 3 4(eof)

file2.dat:

4 3 2 1 (eof)

COMP2012H (Functions and file I/O) 118

File I/O: Example 2

// Copies indata.dat to outdata.dat

// and counts the number of lines.

// Prints file to screen too.

#include <iostream>

#include <fstream>

using namespace std;

void main(){

ifstream ins;

ofstream outs;

int count=0;

char next;

ins.open("indata.dat"); // open the input file

outs.open("outdata.dat"); // open the output file

COMP2012H (Functions and file I/O) 119

File I/O: Example 2

COMP2012H (Functions and file I/O) 120

if(!ins.is_open()|| !outs.is_open()){//always check the following

cerr << “file(s) cannot be open\n”;

exit(-1);

}

while(true){ // loop for each line

while(true){ // loop to read each char on line

ins.get(next);

if(ins.eof() || next== '\n')

break;

cout << next;

outs << next;

}

count++;

cout << endl;

if(ins.eof())

break;

outs << endl;

}

ins.close();

outs.close();

cout << "Number of lines copied: " << count << endl;

}

File I/O: Example 2

indata.dat:

a b c

top10 methods to count spaces

1 3(eof)

outdata.dat:

a b c

top10 methods to count spaces

1 3(eof)

Output to screen:

a b c

top10 methods to count spaces

1 3

Number of lines copied: 4

COMP2012H (Functions and file I/O) 121

Another Example

 Program CopyFile.cpp demonstrates the use of the other

fstream functions

 get, put, close and eof

 Copy from one file to another

 #define in the program associates the name of the stream

with the actual file name

 fail() function - returns nonzero if file fails to open

122COMP2012H (Functions and file I/O)

CopyFile.cpp

Program Output

Input file copied to output file.

37 lines copied.

COMP2012H (Functions and file I/O) 123

CopyFile.cpp (Header)

// File: CopyFile.cpp

// Copies file InData.txt to file OutData.txt

#include <cstdlib>

#include <fstream>

using namespace std;

// Associate stream objects with external file

// names

#define inFile "InData.txt"

#define outFile "OutData.txt"

COMP2012H (Functions and file I/O) 124

CopyFile.cpp (Declarations)

// Functions used ...

// Copies one line of text

int copyLine(ifstream&, ofstream&);

int main()

{

// Local data ...

int lineCount;

ifstream ins;

ofstream outs;

COMP2012H (Functions and file I/O) 125

CopyFile.cpp (Opening Input File)

// Open input and output file, exit on any

// error.

ins.open(inFile);

if (ins.fail ())

{

cerr << "*** ERROR: Cannot open " <<

inFile << " for input." << endl;

return EXIT_FAILURE; // failure return

} // end if

COMP2012H (Functions and file I/O) 126

CopyFile.cpp (Opening Output File)
outs.open(outFile);

if (outs.fail()) {

cerr << "*** ERROR: Cannot open " << outFile

<< " for output." << endl;

return EXIT_FAILURE; // failure return

} // end if

COMP2012H (Functions and file I/O) 127

CopyFile.cpp (Copy Line by Line)

// Copy each character from inData to outData.

lineCount = 0;

do{

if (copyLine(ins, outs) != 0)

lineCount++;

} while (!ins.eof());

// Display a message on the screen.

cout << "Input file copied to output file."

<< endl;

cout << lineCount << " lines copied." << endl;

ins.close();

outs.close();

return 0; // successful return

}

COMP2012H (Functions and file I/O) 128

CopyFile.cpp (copyLine procedure)

// Copy one line of text from one file to another

// Pre: ins is opened for input and outs for

// output.

// Post: Next line of ins is written to outs.

// The last character processed from

// ins is <nwln>;

// the last character written to outs

// is <nwln>.

// Returns: The number of characters copied.

COMP2012H (Functions and file I/O) 129

CopyFile.cpp (Character Reading)

int copyLine (ifstream& ins, ofstream& outs){

// Local data ...

const char NWLN = '\n';

char nextCh;

int charCount = 0;

// Copy all data characters from stream ins to

// stream outs.

ins.get(nextCh);

while ((nextCh != NWLN) && !ins.eof()){

outs.put(nextCh);

charCount++;

ins.get (nextCh);

} // end while

COMP2012H (Functions and file I/O) 130

CopyFile.cpp (Detection of EOF)
// If last character read was NWLN write it

// to outs.

if (!ins.eof())

{

outs.put(NWLN);

charCount++;

}

return charCount;

} // end copyLine

COMP2012H (Functions and file I/O) 131

File I/O
 For each file stream, there is a 4-bit state flag, which contains:

 badbit (unrecoverable error in the stream)

 failbit (recoverable error in the stream)

 eofbit (EOF reached)

 goodbit (no error = none of above bits set)

 clear() is used to set the goodbit and clear other bits.

 fail() is to test if any error occurs (badbit or failbit is set), e.g., writing to an input file.
Setting clear() will recover the case when failbit is set.

 bad() also tests the errors (badbit is set), but these are unrecoverable (i.e., calling
clear() doesn't help). For example, writing to a file but there is no disk space.

 When you reach the end-of-file, the eofbit is set, that stops you to read the file
anymore. So, you should call clear() first to reset that eofbit before the file can be
read again.

 Use foo.seekg (0, ios::beg) to go back to the beginning of the file for get

 Use foo.seekp (0, ios::beg) to go back to the beginning of the file for put

 Get length of a get file: foo.seekg (0, ios::end); length =
foo.tellg(); // analogous for a put file using seekp() and tellp()

 You can check these bits at any time in your program by calling rdstate().

 For details, you may refer to cplusplus.com

132COMP2012H (Functions and file I/O)

Passing IO streams to functions

// passing input and output files into function

void io_demo(istream & in, ostream & out){

int i, j;

in >> i >> j;

out << j << " " << i << endl; //write j and i

}

int main(){

ifstream ins;

ofstream outs;

ins.open("in.txt");

outs.open("out.txt");

io_demo(cin, cout);

io_demo(ins, outs);

return 0;

}

in.txt:

4 8

run

123 678

Outputs:

678 123

out.txt

8 4

133COMP2012H (Functions and file I/O)

