
Program Flow Control

H.O.#3

Fall 2015

Gary Chan

Topics

 if-else and if–else if statements

 Operator precedence

 bitwise operators

 switch statements

 while statements

 do-while statements

COMP2012H (Flow control) 2

Three Program Structures

 Sequence - executable statements which the computer processes in

the given order

 Choice - sequence(s) selected depending on some condition

if <condition exists>{

<do P>

}

 Iteration - repetitively executed sequences

while <condition exists>{

<do P>

}

COMP2012H (Flow control) 3

Sequence

 It is natural to write a program as a sequence of program

structures such as sequences, choices, and iterations

COMP2012H (Flow control) 4

Choice Constructs

 Provide

 Ability to control whether a statement list is executed

 Two constructs

 if statement

 if

 if-else

 if-else if

 switch statement

COMP2012H (Flow control) 5

The Basic if Statement

 Syntax

if(Expression)

Action

 Example: absolute value

if(value < 0)

value = -value;

Expression

Action

true false

Result is non-zero, do Action

COMP2012H (Flow control) 6

Absolute Value

// program to read number & print its absolute value

#include <iostream>

using namespace std;

int main(){

int value;

cout << "Enter integer: ";

cin >> value;

if(value < 0)

value = -value;

cout << "The absolute value is " << value << endl;

return 0;

}

COMP2012H (Flow control) 7

Choice (if)

* Put multiple action statements

within braces

if <it's raining>{

<take umbrella>

<wear raincoat>

} if(-1)

cout << -1 << endl;

if(2)

cout << 2 << endl;

if(0)

cout << 0 << endl;

if(! 4) // or !-4

cout << 4 << endl;

executed

Unexecuted

COMP2012H (Flow control) 8

Sorting Two Numbers

int value1;

int value2;

int temp;

cout << "Enter two integers: ";

cin >> value1 >> value2;

if(value1 > value2){

temp = value1;

value1 = value2;

value2 = temp;

}

cout << "The input in sorted order: "

<< value1 << " " << value2 << endl;

COMP2012H (Flow control) 9

Relational Operators

Relational operators are used to compare two values

Math C++ Plain English

= == equals [example: if(a==b)]

[(a=b) means put the value of b into a]

< < less than

 <= less than or equal to

> > greater than

 >= greater than or equal to

 != not equal to

COMP2012H (Flow control) 10

Relational Expressions

Examples:

numberOfStudents < 200

20 * j == 10 + i

COMP2012H (Flow control) 11

Operator Precedence

Which comes first?

* / %

+ -

< <= >= >

== !=

=

Answer:

COMP2012H (Flow control) 12

The if-else Statement

 Syntax of if-else

if <it's sunny>{

<walk cat>

}

else{

<take cat with umbrella>

}

 Example

if(v == 0)

cout << "v is 0";

else

cout << "v is not 0";

Expression

Action1 Action2

true false

COMP2012H (Flow control) 13

Finding the Bigger Value

int value1;

int value2;

int larger;

cout << "Enter two integers: ";

cin >> value1 >> value2;

if(value1 > value2)

larger = value1;

else

larger = value2;

cout << "Larger of inputs is: " << larger << endl;

COMP2012H (Flow control) 14

Selection

 Often we want to perform a particular action depending on the

value of an expression

 Two ways to do this

 if-else-if statement

 if-else statements “glued” together

 switch statement

 An advanced construct

COMP2012H (Flow control) 15

if-else if Statements

if <Mon, Wed, or Fri AM>{

<goto MATH>

}

else if <Tues, Thurs PM>{

<goto COMP2012H>

}

else if <1PM or 7PM>{

<eat>

}

else{

<sleep>

}

COMP2012H (Flow control) 16

if-else-if Statement

 Example

if(score >= 90)

cout << "Grade = A" << endl;

else if(score >= 80)

cout << "Grade = B" << endl;

else if(score >= 70)

cout << "Grade = C" << endl;

else if(score >= 60)

cout << "Grade = D" << endl;

else

cout << "Grade = F" << endl;

COMP2012H (Flow control) 17

switch Statement

switch(int(score)/10){

case 10: // Note: empty here

case 9: cout << "Grade = A" << endl;

break;

case 8: cout << "Grade = B" << endl;

break;

case 7: cout << "Grade = C" << endl;

break;

case 6: cout << "Grade = D" << endl;

break;

default: cout << "Grade = F" << endl;

}

COMP2012H (Flow control) 18

Remember to break if you do not want case to

falls through

int i=4;

switch(i){

case 1:

cout << 1 << endl;

case 2:

cout << 2 <<endl;

case 4:

cout << 4 << endl;

case 5:

cout << 5 << endl;

default:

cout << "default" << endl;

}

4

5

default

Output:

COMP2012H (Flow control) 19

int left;

int right;

char oper;

cout << "Enter simple expression: ";

cin >> left >> oper >> right;

cout << left << " " << oper << " " << right

<< " = ";

switch (oper) {

case '+' : cout << left + right << endl; break;

case '-' : cout << left - right << endl; break;

case '*' : cout << left * right << endl; break;

case '/' : cout << left / right << endl; break;

default: cout << "Illegal operation" << endl;

}

A Calculator Program

COMP2012H (Flow control) 20

enum type

 Assigning a list of items to some numeric values
 Define a set of alternative values for some attributes

 Usually for code readability

 By default, the first enumerator is assigned the value 0

 Enumerators are const values/objects

 An object of enumeration type may be initialized or assigned
only by one of its enumerators or by another object of the same
enumeration type

 An enumerator value need not be unique (e.g.,

enum Forms {shape = 1, sphere, cylinder = 2,
polygon};

COMP2012H (Flow control) 21

#include <iostream>
using namespace std;

int main(){

enum fruit {APPLE = 2, PINEAPPLE, ORANGE, BANANA};
fruit snack;

cout << "What fruit to eat for snack? (2 for apple, 3 for pineapple, 4 for orange,
and 5 for banana)" << endl;
cin >> (int) snack; // cin gets int

switch(snack){
case APPLE:
cout << "Have apple!" << endl;
break;

case PINEAPPLE:
cout << "Have pineapple!" << endl;
break;

case ORANGE:
cout << "Have orange!" << endl;
break;

case BANANA:
cout << "Have banana!" << endl;
break;

default:
cout << "No such choice." << endl;
break;

}

exit(0);
}

cssu5:> a.out

What fruit to eat for snack? (2 for

apple, 3 for pineapple, 4 for orange, and

5 for banana)

2

Have apple!

cssu5:> a.out

What fruit to eat for snack? (2 for

apple, 3 for pineapple, 4 for orange, and

5 for banana)

6

No such choice.

COMP2012H (Flow control) 22

A Boolean Type

 C++ contains a type named bool which can have one of two values

 true (corresponds to non-zero value 1)

 false (corresponds to zero value 0)

 Boolean operators can be used to form more complex conditional

expressions

 The and operator is &&

 The or operator is ||

 The not operator is !

 A conditional expression terminates early once the result is known

 Warning

 & and | are also operators (bitwise operator)

 << and >> are also bitwise operators

 Discussed later

COMP2012H (Flow control) 23

A Boolean Type

 4 bytes, takes on values 1 or 0

 !true = 0; !false = 1

 Example logical expressions

bool P = true;

bool Q = false;

bool R = true;

bool S = P && Q;

bool T = !Q || R;

bool U = !(R && !Q);

bool V = (x > y);

COMP2012H (Flow control) 24

More Operator Precedence

 Precedence of operators (from highest to lowest)

 Parentheses (…)

 Unary operators !

 Multiplicative operators * / %

 Additive operators + -

 Relational ordering < <= >= >

 Relational equality == !=

 Logical and &&

 Logical or ||

 Assignment =

COMP2012H (Flow control) 25

More Operator Precedence

 Examples

5 != 6 || 7 <= 3

(5 !=6) || (7 <= 3)

5 * 15 + 4 == 13 && 12 < 19 || !false == 5 < 24

false true true

COMP2012H (Flow control) 26

Bitwise Operators

 Numbers are represented as bits in computer

 E.g., 2 = 0010, 8 = 01000, 12 = 01100

 A programmer may manipulate the bits using operators

 >> (right-shift)

 << (left-shift)

 & (and)

 | (or)

 ~ (not)

COMP2012H (Flow control) 27

#include <iostream>

using namespace std;

int main(){

int n = 15; /* n = 00001111 */

int m = 18; /* m = 00010010 */

cout << (n << 2) << endl; // get 00111100

cout << (n >> 2) << endl; // get 00000011

cout << (n | m) << endl; // get 00011111

cout << (n & m) << endl; // get 00000010

cout << (~m & 7) << endl; // get 00000101

int mask = 0;

for(int i = 0; i <= 7; i++)

mask = mask | (1 << i);

cout << mask << endl; // mask is 255: the last 8 bits are 1

}

Output answers: 60, 3, 31, 2, 5

COMP2012H (Flow control) 28

The if code region is entered

only if the expression is non-zero

int i=3;

if(!i)

cout << i << endl;

if(~i)

cout << i << endl;

if(13 && -12) // similar to i=13; j=-12, if (i && j)

cout << “entered” << “\n”;
Executed

Unexecuted

Executed

COMP2012H (Flow control) 29

Nested if Statements

 Nested means that one complete statement is inside

another

 Example:

if <it is Tuesday>{

if <it is time for class>{

<go to COMP2012H>

}

<call your friends>

}

COMP2012H (Flow control) 30

“Dangling Else” Problem

 Problem: Nested if statements can seem ambiguous in their

meaning.

 What is the value of c after the following is executed?

int a=-1, b=1, c=1;

if(a>0)

if(b>0)

c = 2;

else

c = 3;

COMP2012H (Flow control) 31

“Dangling Else” Problem

 C++ groups a dangling else with the most recent if.

 The following indentation shows how C++ would group this

example (answer: c=1).

int a=-1, b=1, c=1;

if(a>0)

if(b>0)

c = 2;

else // dangling else grouped to nearest if

c = 3;

COMP2012H (Flow control) 32

“Dangling Else” Problem

 Use extra brackets { } to clarify the intended meaning,

even if not necessary.

int a=-1, b=1, c=1;

if(a>0){

if(b>0)

c = 2;

else // parenthesis avoid dangling else

c = 3;

}
int a=-1, b=1, c=1;

if(a>0){

if(b>0)

c = 2;

}

else

c = 3;

COMP2012H (Flow control) 33

Shortcut Assignment

 C++ has a set of operators for applying an
operation to a variable and then storing the
result back into the variable

 Shortcut assignments: *=, /=, +=, -=, %=

 Examples
int i = 3;

i += 4; // i = i + 4

cout << i << endl; // i is now 7

double a = 3.2;

a *= 2.0; // a = a * 2.0

cout << a << endl; // a is now 6.4

int change = 1265;

change %= 100; // change = change % 100

cout << change << endl; // change is now 65

COMP2012H (Flow control) 34

Increment and Decrement

 C++ has special operators for incrementing or decrementing an object
by one

 Examples

int k = 4;

++k; // k=k+1 : k is 5

k++; // k=k+1 : k is 6

cout << k << endl;

int i = k++; // i is 6, k is 7

cout << i << " " << k << endl;

int j = ++k; // j is 8, k is 8

cout << j << " " << k << endl;

COMP2012H (Flow control) 35

Increment and Decrement

 What is the difference between k++ and ++k?

 ++k increments first, and the incremented value is

used in the expression

 k++ uses the initial value of k in the expression,

and increments afterwards

 Examples

int a, b, c, d, k;

k = 3;

a = ++k; // k=4, a=4

b = --a; // a=3, b=3

c = b++; // c=3, b=4

d = c--; // d=3, c=2

COMP2012H (Flow control) 36

Loops

Iterative Constructs

 Provide

 Ability to control how many times a statement list is executed

 Three constructs

 while statement

 for statement

 do-while statement

COMP2012H (Flow control) 38

The while Statement

 Syntax

while (Expression)

Action

 How it works:

 If Expression is true then execute

Action

 Repeat this process until Expression

evaluates to false

 Action is either a single statement

or a group of statements within

braces

Expression

Action

true false

COMP2012H (Flow control) 39

N! (while)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

n = 1;

while(n <= number){

factorial *= n;

n++;

}

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 40

2N (while)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

n = 1;

while(n <= number){

result *= 2;

n++;

}

cout << "Two raised to the " << number

<< " power is " << result << endl;

1 << number

COMP2012H (Flow control) 41

Finding the Maximum Input (using while)

int value=0; //input value

int max=0; //maximum value

while(value!=-1){

cout << "Enter a value (-1 to stop): ";

cin >> value;

if(value > max)

max = value;

}

cout << "The maximum value found"

<< " is " << max << endl;

COMP2012H (Flow control) 42

The value of the input
operation corresponds to
true only if a successful
extraction was made

COMP2012H (Flow control) 43

#include <iostream>

using namespace std;

int main() {

int listSize = 0;

int value;

double sum = 0.;

double average;

cout << "Provide a list of numbers (CTRL-D to stop) " << endl;

while (cin >> value) {

sum += value;

listSize++;

}

if(listSize > 0){

average = sum / listSize;

cout << "Average: " << average << endl;

}

else

cout << "No list to average" << endl;

return 0;

}

Averaging numbers

The for Statement

 Syntax

for (ForInit; ForExpression; PostExpression)

Action

 How it works:

 Execute ForInit statement

 While ForExpression is true

 Execute Action

 Execute PostExpression

 Example

int i;

for(i=1; i<=20; i++)

cout << "i is " << i << endl;

COMP2012H (Flow control) 44

Iteration Using for Statement

ForExpression

Action

true false

ForInit

PostExpression

COMP2012H (Flow control) 45

N! (for)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

for(n=1; n<=number; n++)

factorial *= n;

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 46

2N (for)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

for(n=1; n<=number; n++)

result *= 2;

cout << "Two raised to the " << number

<< " power is " << result << endl;

COMP2012H (Flow control) 47

One may put multiple statements in

ForInit and PostExpression

for(i = 0, j=0; i < 10; i++, j++)

cout << i << ", " << j << '\n';

0, 0

1, 1

2, 2

3, 3

4, 4

5, 5

6, 6

7, 7

8, 8

9, 9

Output:

for(;;){

// forever loop

}

COMP2012H (Flow control) 48

The Do-While Statement

 Syntax

do Action

while (Expression)

 How it works:

 Execute Action

 if Expression is true then execute
Action again

 Repeat this process until
Expression evaluates to false

 Action is either a single statement
or a group of statements within
braces

Action

true

false

Expression

COMP2012H (Flow control) 49

N! (do-while)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

n = 1;

do{

factorial *= n;

n++;

}while(n <= number);

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 50

2N (do-while)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

n = 1;

do{

if(number != 0)

result *= 2;

n++;

}while (n <= number);

cout << "Two raised to the " << number

<< " power is " << result << endl;

COMP2012H (Flow control) 51

Maximum (do-while)

int value; //input value

int max=0; //maximum value

do{

cout << "Enter a value (-1 to stop): ";

cin >> value;

if(value > max)

max = value;

}while(value!=-1);

cout << "The maximum value found is "

<< " is " << max << endl;

COMP2012H (Flow control) 52

Waiting for a Reply

char reply;

do{

//do something

cout << "Continue(y/n): ";

cin >> reply;

}while(reply!='n');

Note that in C++, character is internally represented by an

8-bit number. To compare characters, we use 'n' (note the quotation)

COMP2012H (Flow control) 53

break and continue

 A break causes the innermost enclosing loop (while, do

while, for) or switch to be exited immediately

 A continue causes the next iteration of the enclosing for,

while, or do loop to begin.

 In the while and do, this means that the test part is executed

immediately

 In the for, control passes to the increment step.

 Applied only to loops, not to switch

COMP2012H (Flow control) 54

Which Loop to Use?

 for loop

 Usually best for sums, products, and counting loops.

 while loop
 You want to repeat an action without knowing exactly how many times it will be

repeated.

 You are working with user input

 There are situations when the action should not be executed.

 do-while loop

 The action should always be executed at least once.

 Otherwise, the do-while loops and while loops are used in similar situations.

COMP2012H (Flow control) 55

Iteration

 Key Points

 Make sure there is a statement that will

eventually stop the loop

 Make sure to initialize loop counters

correctly

 Have a clear purpose for the loop

COMP2012H (Flow control) 56

How to Stop a Loop

 Known number of iterations before the loop stops

(for)

 Test for a user-controlled

condition before or after

each iteration (while, do-while)

COMP2012H (Flow control) 57

Common Loop Errors

while(balance >= 0.0);

{

balance = balance - amount;

}

 This will lead to an infinite loop!

for(n=1; n<=count; n++);

{

cout << "hello" << endl;

}

 "hello" only printed once!

COMP2012H (Flow control) 58

Potential Loop Errors

while(balance != 0.0){

balance = balance - amount;

}

 balance may not become exactly zero due to numerical inaccuracies

(solution: use <=)

while(power <= 1000){

cout << "Next power of N is " << power << endl;

power *= n;

}

 Be sure to initialize to 0 a variable used for sums

 Be sure to initialize to 1 a variable used for products

COMP2012H (Flow control) 59

Nested Loops

 Nested loops are loops within loops. They are

similar in principle to nested if and if-else

statements.

 Many applications require nested loops.

COMP2012H (Flow control) 60

Nested Loops

// Find the average score on 8 lab assignments

int n, lastlab=8;

double avg, score, tscore;

char resp;

do{

tscore = 0;

for(n=1; n<=lastlab; n++){

cout << "Enter student’s score for lab " << n <<
": ";

cin >> score;

tscore += score;

}

avg = tscore/double(lastlab);

cout << "The average score is " << avg << endl;

cout << "Enter another student (y/n)? ";

cin >> resp;

}while(resp=='y' || resp=='Y');

COMP2012H (Flow control) 61

Diamond Pattern

 Print out the following diamond pattern

*

* * *

* * * * *

* * * * * * *

* * * * * * * * *

* * * * * * *

* * * * *

* * *

*

COMP2012H (Flow control) 62

Diamond Pattern

 Subproblem:
 print out the upper half

 print out the lower half

 Print out upper half:
 row 1: print 4 spaces, 1 star;

 row 2: print 3 spaces, 3 stars;

 row 3: print 2 spaces, 5 stars;

 row 4: print 1 space, 7 stars;

 row 5: print 0 spaces, 9 stars;

 Algorithm Refinement:
 row 1: print (5-row) spaces, (2*row - 1) stars;

 row 2: print (5-row) spaces, (2*row - 1) stars;

 row 3: print (5-row) spaces, (2*row - 1) stars;

 row 4: print (5-row) spaces, (2*row - 1) stars;

 row 5: print (5-row) spaces, (2*row - 1) stars;

 i.e., row i: print (5-i) spaces, (2*i - 1) stars

COMP2012H (Flow control) 63

Diamond Pattern

int row, space, star;

for(row=1; row<=5; row++){ //top half

for(space=1; space<=5-row; space++)

cout << " ";

for(star=1; star<=2*row-1; star++)

cout << "*";

cout << endl ;

}

for(row=4; row>=1; row--){ //bottom half

for(space=1; space<=5-row; space++)

cout << " ";

for(star=1; star<=2*row-1; star++)

cout << "*";

cout << endl ;

}

COMP2012H (Flow control) 64

Multiplication Table

// Program to output the

// multiplication table as a

// 2-dimensional table

int i; //Outer loop counter

int j; //Inner loop counter

for(i=1; i<=10; i++){

for(j=1; j<=10; j++)

cout << i*j << " ";

cout << endl;

}

COMP2012H (Flow control) 65

