
Program Flow Control

H.O.#3

Fall 2015

Gary Chan

Topics

 if-else and if–else if statements

 Operator precedence

 bitwise operators

 switch statements

 while statements

 do-while statements

COMP2012H (Flow control) 2

Three Program Structures

 Sequence - executable statements which the computer processes in

the given order

 Choice - sequence(s) selected depending on some condition

if <condition exists>{

<do P>

}

 Iteration - repetitively executed sequences

while <condition exists>{

<do P>

}

COMP2012H (Flow control) 3

Sequence

 It is natural to write a program as a sequence of program

structures such as sequences, choices, and iterations

COMP2012H (Flow control) 4

Choice Constructs

 Provide

 Ability to control whether a statement list is executed

 Two constructs

 if statement

 if

 if-else

 if-else if

 switch statement

COMP2012H (Flow control) 5

The Basic if Statement

 Syntax

if(Expression)

Action

 Example: absolute value

if(value < 0)

value = -value;

Expression

Action

true false

Result is non-zero, do Action

COMP2012H (Flow control) 6

Absolute Value

// program to read number & print its absolute value

#include <iostream>

using namespace std;

int main(){

int value;

cout << "Enter integer: ";

cin >> value;

if(value < 0)

value = -value;

cout << "The absolute value is " << value << endl;

return 0;

}

COMP2012H (Flow control) 7

Choice (if)

* Put multiple action statements

within braces

if <it's raining>{

<take umbrella>

<wear raincoat>

} if(-1)

cout << -1 << endl;

if(2)

cout << 2 << endl;

if(0)

cout << 0 << endl;

if(! 4) // or !-4

cout << 4 << endl;

executed

Unexecuted

COMP2012H (Flow control) 8

Sorting Two Numbers

int value1;

int value2;

int temp;

cout << "Enter two integers: ";

cin >> value1 >> value2;

if(value1 > value2){

temp = value1;

value1 = value2;

value2 = temp;

}

cout << "The input in sorted order: "

<< value1 << " " << value2 << endl;

COMP2012H (Flow control) 9

Relational Operators

Relational operators are used to compare two values

Math C++ Plain English

= == equals [example: if(a==b)]

[(a=b) means put the value of b into a]

< < less than

 <= less than or equal to

> > greater than

 >= greater than or equal to

 != not equal to

COMP2012H (Flow control) 10

Relational Expressions

Examples:

numberOfStudents < 200

20 * j == 10 + i

COMP2012H (Flow control) 11

Operator Precedence

Which comes first?

* / %

+ -

< <= >= >

== !=

=

Answer:

COMP2012H (Flow control) 12

The if-else Statement

 Syntax of if-else

if <it's sunny>{

<walk cat>

}

else{

<take cat with umbrella>

}

 Example

if(v == 0)

cout << "v is 0";

else

cout << "v is not 0";

Expression

Action1 Action2

true false

COMP2012H (Flow control) 13

Finding the Bigger Value

int value1;

int value2;

int larger;

cout << "Enter two integers: ";

cin >> value1 >> value2;

if(value1 > value2)

larger = value1;

else

larger = value2;

cout << "Larger of inputs is: " << larger << endl;

COMP2012H (Flow control) 14

Selection

 Often we want to perform a particular action depending on the

value of an expression

 Two ways to do this

 if-else-if statement

 if-else statements “glued” together

 switch statement

 An advanced construct

COMP2012H (Flow control) 15

if-else if Statements

if <Mon, Wed, or Fri AM>{

<goto MATH>

}

else if <Tues, Thurs PM>{

<goto COMP2012H>

}

else if <1PM or 7PM>{

<eat>

}

else{

<sleep>

}

COMP2012H (Flow control) 16

if-else-if Statement

 Example

if(score >= 90)

cout << "Grade = A" << endl;

else if(score >= 80)

cout << "Grade = B" << endl;

else if(score >= 70)

cout << "Grade = C" << endl;

else if(score >= 60)

cout << "Grade = D" << endl;

else

cout << "Grade = F" << endl;

COMP2012H (Flow control) 17

switch Statement

switch(int(score)/10){

case 10: // Note: empty here

case 9: cout << "Grade = A" << endl;

break;

case 8: cout << "Grade = B" << endl;

break;

case 7: cout << "Grade = C" << endl;

break;

case 6: cout << "Grade = D" << endl;

break;

default: cout << "Grade = F" << endl;

}

COMP2012H (Flow control) 18

Remember to break if you do not want case to

falls through

int i=4;

switch(i){

case 1:

cout << 1 << endl;

case 2:

cout << 2 <<endl;

case 4:

cout << 4 << endl;

case 5:

cout << 5 << endl;

default:

cout << "default" << endl;

}

4

5

default

Output:

COMP2012H (Flow control) 19

int left;

int right;

char oper;

cout << "Enter simple expression: ";

cin >> left >> oper >> right;

cout << left << " " << oper << " " << right

<< " = ";

switch (oper) {

case '+' : cout << left + right << endl; break;

case '-' : cout << left - right << endl; break;

case '*' : cout << left * right << endl; break;

case '/' : cout << left / right << endl; break;

default: cout << "Illegal operation" << endl;

}

A Calculator Program

COMP2012H (Flow control) 20

enum type

 Assigning a list of items to some numeric values
 Define a set of alternative values for some attributes

 Usually for code readability

 By default, the first enumerator is assigned the value 0

 Enumerators are const values/objects

 An object of enumeration type may be initialized or assigned
only by one of its enumerators or by another object of the same
enumeration type

 An enumerator value need not be unique (e.g.,

enum Forms {shape = 1, sphere, cylinder = 2,
polygon};

COMP2012H (Flow control) 21

#include <iostream>
using namespace std;

int main(){

enum fruit {APPLE = 2, PINEAPPLE, ORANGE, BANANA};
fruit snack;

cout << "What fruit to eat for snack? (2 for apple, 3 for pineapple, 4 for orange,
and 5 for banana)" << endl;
cin >> (int) snack; // cin gets int

switch(snack){
case APPLE:
cout << "Have apple!" << endl;
break;

case PINEAPPLE:
cout << "Have pineapple!" << endl;
break;

case ORANGE:
cout << "Have orange!" << endl;
break;

case BANANA:
cout << "Have banana!" << endl;
break;

default:
cout << "No such choice." << endl;
break;

}

exit(0);
}

cssu5:> a.out

What fruit to eat for snack? (2 for

apple, 3 for pineapple, 4 for orange, and

5 for banana)

2

Have apple!

cssu5:> a.out

What fruit to eat for snack? (2 for

apple, 3 for pineapple, 4 for orange, and

5 for banana)

6

No such choice.

COMP2012H (Flow control) 22

A Boolean Type

 C++ contains a type named bool which can have one of two values

 true (corresponds to non-zero value 1)

 false (corresponds to zero value 0)

 Boolean operators can be used to form more complex conditional

expressions

 The and operator is &&

 The or operator is ||

 The not operator is !

 A conditional expression terminates early once the result is known

 Warning

 & and | are also operators (bitwise operator)

 << and >> are also bitwise operators

 Discussed later

COMP2012H (Flow control) 23

A Boolean Type

 4 bytes, takes on values 1 or 0

 !true = 0; !false = 1

 Example logical expressions

bool P = true;

bool Q = false;

bool R = true;

bool S = P && Q;

bool T = !Q || R;

bool U = !(R && !Q);

bool V = (x > y);

COMP2012H (Flow control) 24

More Operator Precedence

 Precedence of operators (from highest to lowest)

 Parentheses (…)

 Unary operators !

 Multiplicative operators * / %

 Additive operators + -

 Relational ordering < <= >= >

 Relational equality == !=

 Logical and &&

 Logical or ||

 Assignment =

COMP2012H (Flow control) 25

More Operator Precedence

 Examples

5 != 6 || 7 <= 3

(5 !=6) || (7 <= 3)

5 * 15 + 4 == 13 && 12 < 19 || !false == 5 < 24

false true true

COMP2012H (Flow control) 26

Bitwise Operators

 Numbers are represented as bits in computer

 E.g., 2 = 0010, 8 = 01000, 12 = 01100

 A programmer may manipulate the bits using operators

 >> (right-shift)

 << (left-shift)

 & (and)

 | (or)

 ~ (not)

COMP2012H (Flow control) 27

#include <iostream>

using namespace std;

int main(){

int n = 15; /* n = 00001111 */

int m = 18; /* m = 00010010 */

cout << (n << 2) << endl; // get 00111100

cout << (n >> 2) << endl; // get 00000011

cout << (n | m) << endl; // get 00011111

cout << (n & m) << endl; // get 00000010

cout << (~m & 7) << endl; // get 00000101

int mask = 0;

for(int i = 0; i <= 7; i++)

mask = mask | (1 << i);

cout << mask << endl; // mask is 255: the last 8 bits are 1

}

Output answers: 60, 3, 31, 2, 5

COMP2012H (Flow control) 28

The if code region is entered

only if the expression is non-zero

int i=3;

if(!i)

cout << i << endl;

if(~i)

cout << i << endl;

if(13 && -12) // similar to i=13; j=-12, if (i && j)

cout << “entered” << “\n”;
Executed

Unexecuted

Executed

COMP2012H (Flow control) 29

Nested if Statements

 Nested means that one complete statement is inside

another

 Example:

if <it is Tuesday>{

if <it is time for class>{

<go to COMP2012H>

}

<call your friends>

}

COMP2012H (Flow control) 30

“Dangling Else” Problem

 Problem: Nested if statements can seem ambiguous in their

meaning.

 What is the value of c after the following is executed?

int a=-1, b=1, c=1;

if(a>0)

if(b>0)

c = 2;

else

c = 3;

COMP2012H (Flow control) 31

“Dangling Else” Problem

 C++ groups a dangling else with the most recent if.

 The following indentation shows how C++ would group this

example (answer: c=1).

int a=-1, b=1, c=1;

if(a>0)

if(b>0)

c = 2;

else // dangling else grouped to nearest if

c = 3;

COMP2012H (Flow control) 32

“Dangling Else” Problem

 Use extra brackets { } to clarify the intended meaning,

even if not necessary.

int a=-1, b=1, c=1;

if(a>0){

if(b>0)

c = 2;

else // parenthesis avoid dangling else

c = 3;

}
int a=-1, b=1, c=1;

if(a>0){

if(b>0)

c = 2;

}

else

c = 3;

COMP2012H (Flow control) 33

Shortcut Assignment

 C++ has a set of operators for applying an
operation to a variable and then storing the
result back into the variable

 Shortcut assignments: *=, /=, +=, -=, %=

 Examples
int i = 3;

i += 4; // i = i + 4

cout << i << endl; // i is now 7

double a = 3.2;

a *= 2.0; // a = a * 2.0

cout << a << endl; // a is now 6.4

int change = 1265;

change %= 100; // change = change % 100

cout << change << endl; // change is now 65

COMP2012H (Flow control) 34

Increment and Decrement

 C++ has special operators for incrementing or decrementing an object
by one

 Examples

int k = 4;

++k; // k=k+1 : k is 5

k++; // k=k+1 : k is 6

cout << k << endl;

int i = k++; // i is 6, k is 7

cout << i << " " << k << endl;

int j = ++k; // j is 8, k is 8

cout << j << " " << k << endl;

COMP2012H (Flow control) 35

Increment and Decrement

 What is the difference between k++ and ++k?

 ++k increments first, and the incremented value is

used in the expression

 k++ uses the initial value of k in the expression,

and increments afterwards

 Examples

int a, b, c, d, k;

k = 3;

a = ++k; // k=4, a=4

b = --a; // a=3, b=3

c = b++; // c=3, b=4

d = c--; // d=3, c=2

COMP2012H (Flow control) 36

Loops

Iterative Constructs

 Provide

 Ability to control how many times a statement list is executed

 Three constructs

 while statement

 for statement

 do-while statement

COMP2012H (Flow control) 38

The while Statement

 Syntax

while (Expression)

Action

 How it works:

 If Expression is true then execute

Action

 Repeat this process until Expression

evaluates to false

 Action is either a single statement

or a group of statements within

braces

Expression

Action

true false

COMP2012H (Flow control) 39

N! (while)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

n = 1;

while(n <= number){

factorial *= n;

n++;

}

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 40

2N (while)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

n = 1;

while(n <= number){

result *= 2;

n++;

}

cout << "Two raised to the " << number

<< " power is " << result << endl;

1 << number

COMP2012H (Flow control) 41

Finding the Maximum Input (using while)

int value=0; //input value

int max=0; //maximum value

while(value!=-1){

cout << "Enter a value (-1 to stop): ";

cin >> value;

if(value > max)

max = value;

}

cout << "The maximum value found"

<< " is " << max << endl;

COMP2012H (Flow control) 42

The value of the input
operation corresponds to
true only if a successful
extraction was made

COMP2012H (Flow control) 43

#include <iostream>

using namespace std;

int main() {

int listSize = 0;

int value;

double sum = 0.;

double average;

cout << "Provide a list of numbers (CTRL-D to stop) " << endl;

while (cin >> value) {

sum += value;

listSize++;

}

if(listSize > 0){

average = sum / listSize;

cout << "Average: " << average << endl;

}

else

cout << "No list to average" << endl;

return 0;

}

Averaging numbers

The for Statement

 Syntax

for (ForInit; ForExpression; PostExpression)

Action

 How it works:

 Execute ForInit statement

 While ForExpression is true

 Execute Action

 Execute PostExpression

 Example

int i;

for(i=1; i<=20; i++)

cout << "i is " << i << endl;

COMP2012H (Flow control) 44

Iteration Using for Statement

ForExpression

Action

true false

ForInit

PostExpression

COMP2012H (Flow control) 45

N! (for)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

for(n=1; n<=number; n++)

factorial *= n;

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 46

2N (for)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

for(n=1; n<=number; n++)

result *= 2;

cout << "Two raised to the " << number

<< " power is " << result << endl;

COMP2012H (Flow control) 47

One may put multiple statements in

ForInit and PostExpression

for(i = 0, j=0; i < 10; i++, j++)

cout << i << ", " << j << '\n';

0, 0

1, 1

2, 2

3, 3

4, 4

5, 5

6, 6

7, 7

8, 8

9, 9

Output:

for(;;){

// forever loop

}

COMP2012H (Flow control) 48

The Do-While Statement

 Syntax

do Action

while (Expression)

 How it works:

 Execute Action

 if Expression is true then execute
Action again

 Repeat this process until
Expression evaluates to false

 Action is either a single statement
or a group of statements within
braces

Action

true

false

Expression

COMP2012H (Flow control) 49

N! (do-while)

int number, factorial, n;

cout << "Enter number: ";

cin >> number;

factorial = 1;

n = 1;

do{

factorial *= n;

n++;

}while(n <= number);

cout << "The factorial of " << number

<< " is " << factorial << endl;

COMP2012H (Flow control) 50

2N (do-while)

int number, result, n;

cout << "Enter number: ";

cin >> number;

result = 1;

n = 1;

do{

if(number != 0)

result *= 2;

n++;

}while (n <= number);

cout << "Two raised to the " << number

<< " power is " << result << endl;

COMP2012H (Flow control) 51

Maximum (do-while)

int value; //input value

int max=0; //maximum value

do{

cout << "Enter a value (-1 to stop): ";

cin >> value;

if(value > max)

max = value;

}while(value!=-1);

cout << "The maximum value found is "

<< " is " << max << endl;

COMP2012H (Flow control) 52

Waiting for a Reply

char reply;

do{

//do something

cout << "Continue(y/n): ";

cin >> reply;

}while(reply!='n');

Note that in C++, character is internally represented by an

8-bit number. To compare characters, we use 'n' (note the quotation)

COMP2012H (Flow control) 53

break and continue

 A break causes the innermost enclosing loop (while, do

while, for) or switch to be exited immediately

 A continue causes the next iteration of the enclosing for,

while, or do loop to begin.

 In the while and do, this means that the test part is executed

immediately

 In the for, control passes to the increment step.

 Applied only to loops, not to switch

COMP2012H (Flow control) 54

Which Loop to Use?

 for loop

 Usually best for sums, products, and counting loops.

 while loop
 You want to repeat an action without knowing exactly how many times it will be

repeated.

 You are working with user input

 There are situations when the action should not be executed.

 do-while loop

 The action should always be executed at least once.

 Otherwise, the do-while loops and while loops are used in similar situations.

COMP2012H (Flow control) 55

Iteration

 Key Points

 Make sure there is a statement that will

eventually stop the loop

 Make sure to initialize loop counters

correctly

 Have a clear purpose for the loop

COMP2012H (Flow control) 56

How to Stop a Loop

 Known number of iterations before the loop stops

(for)

 Test for a user-controlled

condition before or after

each iteration (while, do-while)

COMP2012H (Flow control) 57

Common Loop Errors

while(balance >= 0.0);

{

balance = balance - amount;

}

 This will lead to an infinite loop!

for(n=1; n<=count; n++);

{

cout << "hello" << endl;

}

 "hello" only printed once!

COMP2012H (Flow control) 58

Potential Loop Errors

while(balance != 0.0){

balance = balance - amount;

}

 balance may not become exactly zero due to numerical inaccuracies

(solution: use <=)

while(power <= 1000){

cout << "Next power of N is " << power << endl;

power *= n;

}

 Be sure to initialize to 0 a variable used for sums

 Be sure to initialize to 1 a variable used for products

COMP2012H (Flow control) 59

Nested Loops

 Nested loops are loops within loops. They are

similar in principle to nested if and if-else

statements.

 Many applications require nested loops.

COMP2012H (Flow control) 60

Nested Loops

// Find the average score on 8 lab assignments

int n, lastlab=8;

double avg, score, tscore;

char resp;

do{

tscore = 0;

for(n=1; n<=lastlab; n++){

cout << "Enter student’s score for lab " << n <<
": ";

cin >> score;

tscore += score;

}

avg = tscore/double(lastlab);

cout << "The average score is " << avg << endl;

cout << "Enter another student (y/n)? ";

cin >> resp;

}while(resp=='y' || resp=='Y');

COMP2012H (Flow control) 61

Diamond Pattern

 Print out the following diamond pattern

*

* * *

* * * * *

* * * * * * *

* * * * * * * * *

* * * * * * *

* * * * *

* * *

*

COMP2012H (Flow control) 62

Diamond Pattern

 Subproblem:
 print out the upper half

 print out the lower half

 Print out upper half:
 row 1: print 4 spaces, 1 star;

 row 2: print 3 spaces, 3 stars;

 row 3: print 2 spaces, 5 stars;

 row 4: print 1 space, 7 stars;

 row 5: print 0 spaces, 9 stars;

 Algorithm Refinement:
 row 1: print (5-row) spaces, (2*row - 1) stars;

 row 2: print (5-row) spaces, (2*row - 1) stars;

 row 3: print (5-row) spaces, (2*row - 1) stars;

 row 4: print (5-row) spaces, (2*row - 1) stars;

 row 5: print (5-row) spaces, (2*row - 1) stars;

 i.e., row i: print (5-i) spaces, (2*i - 1) stars

COMP2012H (Flow control) 63

Diamond Pattern

int row, space, star;

for(row=1; row<=5; row++){ //top half

for(space=1; space<=5-row; space++)

cout << " ";

for(star=1; star<=2*row-1; star++)

cout << "*";

cout << endl ;

}

for(row=4; row>=1; row--){ //bottom half

for(space=1; space<=5-row; space++)

cout << " ";

for(star=1; star<=2*row-1; star++)

cout << "*";

cout << endl ;

}

COMP2012H (Flow control) 64

Multiplication Table

// Program to output the

// multiplication table as a

// 2-dimensional table

int i; //Outer loop counter

int j; //Inner loop counter

for(i=1; i<=10; i++){

for(j=1; j<=10; j++)

cout << i*j << " ";

cout << endl;

}

COMP2012H (Flow control) 65

