
H.O.#2

Fall 2015

Gary Chan

Overview of C++ Programming

Topics

 C++ as a problem-solving tool

 Introduction to C++

 General syntax

 Variable declarations and definitions

 Assignments

 Arithmetic operators

COMP2012H (Overview) 2

What is C++?

 C++ is a programming language.

 A computer program performs a specific task, and may

interact with the user and the computer hardware.

 Human work model:

 Computer work model:

COMP2012H (Overview) 3

What is C++?

 One of the most popular programming languages:
 C++ (originally C)

 Basic

 Pascal

 Java

 Perl

 Cobol

 Scheme (Lisp)

 Smalltalk

 The common versions of C++:

 Microsoft Visual C++

 g++ (for Unix machines)

COMP2012H (Overview) 4

Why C++?

 Bad News:

 C++ is not so easy to learn

 Good News:

 Lots of good jobs for programmers

 Proficient in C++ makes you a good programmer (as
it is a very disciplined language)

 C++ has wide applications in commercial, industrial
and government sectors

 Though C++ is not the easiest language (Java and
Python are easier), it is not the hardest either
(Scheme, Prolog, and Assembly languages are really
difficult!)

COMP2012H (Overview) 5

C++ Software Development (More on This Later)

 Major steps

1. Editing (to write the program)

2. Compiling (creates .obj file)

3. Linking with compiled files (creates .exe file)

 Object files

 Library modules

4. Loading and executing

5. Testing the program

Compile

Link

Library routines

Other object files

Think

Edit

Load

Execute

Source Program

COMP2012H (Overview) 6

Hardware Overview

Memory

CPU

Input

Devices

Output

Devices

The variables and

instructions are stored here

COMP2012H (Overview) 7

Our First Program

// a simple program

#include <iostream>

using namespace std; // space of variables

int main() {

cout << "Hello world!" << endl;

return 0;

}

Preprocessor

statements

Print

statement

Ends execution

of main() which ends

program

Comments

Function

named

main()

indicates

start of

program

cssu5:~> g++ hello.cpp -o hello

cssu5:~> hello

Hello world!

cssu5:~>

end of line;

“\n” or ‘\n’

COMP2012H (Overview) 8

using namespace

 One of the problems encountered in C is that you run out of names for functions and
identifiers

 It becomes harder to think of new names, e.g., using sort(), sort1(), sort_new(), etc.,
is not ideal

 In standard C++, each function and identifier lives in a “region” or space, to allow
name reuse or prevent naming collision. This is done using using namespace
keywords.

 Each set of C++ definitions in a library or program is “wrapped” in a namespace,
and if some other definition has an identical name, but is in a different
namespace, then there is no collision

 E.g., std::cout << “hello\n”; // print to standard out

 The command using namespace is the context under which your program is run.

You must be aware of namespace before you write any programs. Without it, if you
simply include header file and use some functions or classes from that header, you
may get some strange errors.

 All the standard C++ libraries are wrapped in a single namespace, which is std.

COMP2012H (Overview) 9

Programming as Problem Solving

 Define the problem.
 What is the input & output?

 What constraints must be satisfied?

 What information is essential?

 Develop a solution

 Construct an algorithm (steps that must be done)

 Implement a program.

 Compile, test, and debug the program.

 Document and maintain the program.

COMP2012H (Overview) 10

Example

 Problem Statement:

 Convert US dollars into Hong Kong dollars.

 Problem Analysis:

 Input: Amount in US$

 Output: Amount in HK$

 Apply official currency exchange rates.

COMP2012H (Overview) 11

Example

 Algorithm

 Read in amount in US$

 Calculate the HK$ amount

 Display the results

COMP2012H (Overview) 12

Example
// converts US$ to HK$

#include <iostream>

using namespace std;

int main(){

double usdollars;

double hkdollars;

// read in amount in US$

cout <<"Enter US$ amount and press return: ";

cin >> usdollars;

// calculate the HK$ amount

hkdollars = 7.8 * usdollars;

// display the results

cout << "US$" << usdollars

<< " = HK$" << hkdollars << endl;

return 0;

} cssu5:~> g++ dollar.cpp –o dollar

cssu5:~> dollar

Enter US$ amount and press return:

2.89

US$2.89 = HK$65.1464
COMP2012H (Overview) 13

Precision Printing

(Printing to 2 decimal points)

#include <iostream>

using namespace std;

int main(){

double x = 123.4567;

cout.setf(ios::fixed); // ostream's functions

cout.precision(2); // ostream's functions

cout << x << endl;

// or printf(“%.2f\n”, x); //include <stdio.h>

return 0;

}

cssu5:~> g++ dollar.cpp –o dollar

cssu5:~> a.out

123.45

COMP2012H (Overview) 14

Example

 Program Implementation:

 Program comments: //

 Library reference: #include

 Function type (for main): int

 Function name and (lack of) parameters:

main()

 Statement braces: { }

 Variable definition: double

 Input/output functions: cin, cout

COMP2012H (Overview) 15

What Makes a Good Program?

 Correctness

 Meets the problem requirements

 Produces correct results

 Easy to read and understand

 Easy to modify

 Easy to debug

 Efficient

 Fast

 Requires less memory

COMP2012H (Overview) 16

Basic C++

General form of a C++ program

//Program description is first

#include directives go next

using namespace std;

int main(){

constant declarations/definitions go here

variable declarations/definitions go here

assignment statements go here

return 0;

}

C++ is a programming language for manipulating numbers

and user-defined objects.

COMP2012H (Overview) 18

Declaration vs. Definition

 A variable provides us with named storage that we can write to, retrieve, and
manipulate throughout the course of our program

 Determines the size and layout of its associated memory, the range of values
that can be stored within that memory, and the set of operations that can be
applied to it

 We speak of a variable, alternatively, as an object

 The definition of an object results in an allocation of storage

 int i; double j; char k;

 The declaration of an object makes known the type and name of the object
without allocation of memory.

 An assertion that a definition of the variable exists elsewhere in the program

 extern int i; extern foo();

 A program can contain only one definition of an object, but any number of object
declarations

 The statement int i is (unfortunately) sometimes spoken as declaration

statement, although defintion statement is more accurate

COMP2012H (Overview) 19

General form of a C++ program

//simple program

#include <iostream>

using namespace std;

int main(){

// constant declaration statement

const double Pi = 3.14159;

// variable declaration statements

double radius;

double area;

// assignment statements

cout << "Enter circle radius: ";

cin >> radius;

area = Pi * radius * radius;

cout << "Area : " << area << endl;

return 0;

}

COMP2012H (Overview) 20

Syntax of the C++ Language

 Reserved words (appear in blue in Visual C++)

 Reserved words have a special meaning in C++.

 The list of reserved words:

asm, auto, bool, break, case, catch, char,

class, const, continue, default, delete, do,

double, else, enum, extern, float, for,

friend, goto, if, include, inline, int, long,

namespace, new, operator, private, protected,

public, register, return, short, signed,

sizeof, static, struct, switch, template,

this, throw, try, typedef, union, unsigned,

using, virtual, void, volatile, while

COMP2012H (Overview) 21

Syntax of the C++ Language

 Identifiers (appear in black in Visual C++)
 An identifier is a name for variables, constants, functions, etc.

 It consists of a letter followed by any sequence of letters, digits or
underscores

 Names are case-sensitive. The following are unique identifiers:
Hello, hello, whoami, whoAMI, WhoAmI

 Names cannot have special characters in them
e.g., X=Y, J-20, #007, etc. are invalid identifiers.

 C++ reserved words cannot be used as identifiers.
 Choose identifiers that are meaningful and easy to remember.

COMP2012H (Overview) 22

Syntax of the C++ Language

 Comments (appear in green in Visual C++)

 Comments are explanatory notes; they are not part of the program.

 Comments are done in two ways:

// A double slash starts a single line comment

/* A slash followed by an asterisk marks the

start of a multiple line comment.

It ends with an asterisk followed by a slash */

COMP2012H (Overview) 23

Syntax of the C++ Language

 Compiler Directive: #include

 It refers to a header file of library functions or variables.

 The compiler reads in the contents of the file before compiling the program.

 The included file is compiled with the program.

 There are two forms of #include:

#include <stdio.h> // for pre-defined files

#include "my_lib.h" // for user-defined files

COMP2012H (Overview) 24

Libraries

 #include loads the code from the standard libraries

#include <iostream> // new I/O library

#include <iostream.h> // old I/O library

#include <stdio.h> // standard functions

#include <math.h> // math functions

#include <stdlib.h> // contains random funct

#include <time.h> // time function

 Some constant declarations

#define PI 3.14

#define e_CHARGE 1.6e-19

#define EXCH_RATE 7.8

#define PLANK_h 6.626e-34

 using namespace std; indicates that the new C++ libraries should be used. If this
line is left out, then the old iostream library is loaded:

#include <iostream.h>

COMP2012H (Overview) 25

Constant Definition

 Constants represent permanent values.

 Their values can only be defined/set in the declaration statement:

const double pi = 3.14159;

 They can make a program more readable and maintainable

Constant definition syntax:

const <type> <identifier> = <constant expression>;

Examples:

const double US2HK = 7.8;

const double HK2Yuan = 0.8;

const double US2Yuan = US2HK* HK2Yuan;

COMP2012H (Overview) 26

Variable Definition

 A variable is best thought of as a container/box for a value:

Variable definition syntax:

<type> <identifier>;

Examples:

int nickel;

int penny;

 A variable must be declared before it can be used.

int main(){

x = 5; // illegal: x was not declared

}

1000

COMP2012H (Overview) 27

Variable Definitions

 A variable can be initialized in a definition:

int x = 3;

 Several variables of the same type can be defined in the same declaration

statement (though it is sometimes better to put them on separate lines):

double total_USD, area;

 A variable must have only one type. For example, a variable of the type int can

only hold integer values.

COMP2012H (Overview) 28

Types of Variable Definitions

 Simple C++ variable types (sizes are often machine-dependent):

 int integer (32-bit integer on PC) (example: 1)

 short 16-bit integer (allows ±32,767)

 long 32-bit integer (allows ±2,147,483,647)

 float 32-bit floating point number (allows about 7 digits of

precision: 0.1234567)

 double 64-bit double precision float (allows about 15 digits of

precision: 0.12345678901234)

 char 8-bit single character (example: ‘y’)

COMP2012H (Overview) 29

Memory Depiction

float y = 12.5;

int Temperature = 32;

char Letter = 'c';

int Number;

12.5

32

'c'

y

Temperature

Letter

1001
1002
1003
1004
1005
1006
1007

Number

1008
1009

Memory

location

1010
1011
1012
1013

COMP2012H (Overview) 30

Assignment Statements

Assignment syntax:

<identifier> = <expression>;

Examples:

int n, m, k; // definition

n = 5;

m = 6 + (4 * 6);

k = (n * 2) + m;

k = k / 2;

COMP2012H (Overview) 31

Assignment Statements

 A variable must be assigned a value before it can be used. Variables are not
automatically initialized in VC++.

int x, y; // x declared, but not initialized

// x and y have random values

y = x; // the random value in x assigned to y

 Once a value has been placed in a variable, it stays there until the program changes
it.

COMP2012H (Overview) 32

Assignment Statements
int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents ;

6

21

NewStudents

OldStudents

-TotalStudents

6

21

NewStudents

OldStudents

27TotalStudents

COMP2012H (Overview) 33

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

10

20

Value1

Value2

10Hold

20

20

Value1

Value2

10Hold

Value1

Value2

Hold

20

10

10

Variable Assignments

COMP2012H (Overview) 34

Arithmetic Operators

 Common

 Addition +

 Subtraction -

 Multiplication *

 Division /

 Mod %

 Note

 No exponentiation operator

COMP2012H (Overview) 35

Integer Division

 Integer division produces an integer result

 It keeps the integral part

 Examples

 3 / 2 evaluates to 1

 4 / 6 evaluates to 0

 10 / 3 evaluates to 3

 -10 / 3 = -(10/3) evaluates to -3

COMP2012H (Overview) 36

Rules for Division

 C++ treats integers different than doubles.

 100 is an int.

 100.0 , 100.0000, and 100. are doubles.

 The general rule for division of int and double types is:

 double/double -> double (normal)

 double/int -> double (normal)

 int/double -> double (normal)

 int/int -> int (special case: any decimal places discarded)

COMP2012H (Overview) 37

Rules for Division

 Example :

 220. / 100.0 double/double -> double result is 2.2

 220. / 100 double/int -> double result is 2.2

 220 / 100.0 int/double -> double result is 2.2

 280 / 100 int/int -> int result is 2

 Summary: division is normal unless both the numerator and denominator are int, then the

result is an int (the decimal places are discarded).

COMP2012H (Overview) 38

Forcing a Type Change

 You can change the type of an expression with a cast operation

 Syntax:

variable1 = type(variable2);

variable1 = type(expression);

 Example:

int x=1, y=2;

double result1 = x/y; // result1 is 0.0

double result2 = double(x)/y; // or (double) x / y; result2 is 0.5

double result3 = x/double(y); // result3 is 0.5

double result4 = double(x)/double(y); // result4 is 0.5

double result5 = double(x/y); // result5 is 0.0

COMP2012H (Overview) 39

Remainder

 a%b produces the remainder (NOT modulo) of the division

 i.e., (a/b) * b + a%b must equal a (hence a%b is the remainder
given by a – (a/b) * b)

 Examples

5 % 2 evaluates to 1 (=5-(5/2)*2)

12 % 4 evaluates to 0 (= 12 – (12/4) * 4)

4 % 5 evaluates to 4 (= 4 – (4/5) * 5)

-4 % 5 evaluates to -4 (=-4 – (-4/5) * 5)

4 % -5 evaluates to 4 (=4 – (4/(-5))*(-5))

-4 % -5 evaluates to -4 (= -4 – (-4/-5)*(-5))

 Hence a%b is different from mod operator.

 (a mod b) always returns a non-negative integer, irrespective of the signs
of a and b.

COMP2012H (Overview) 40

Operators and Precedence

 Operator precedence tells how to evaluate expressions

 Standard precedence order

 () Evaluated first, if nested innermost

done first

 * / % Evaluated second. If there are several,

then evaluate from left-to-right

 + - Evaluate third. If there are several,

then evaluate from left-to-right

 Examples

1 + 2 * 3 / 4 – 5 = 1 + 6/4 – 5 = -3

2 * 4 / 5 + 3 * 5 % 4 = 8/5 + 15%4 = 1 + 3 = 4

3.0 * 3 / 4 = 9.0/4 = 2.25

(1 + 3) * ((2 + 4 * 6) * 3) / 2 + 2 = 4*(26*3)/2 + 2 = 158

COMP2012H (Overview) 41

Standard Input/Output

 cin - the standard input stream

Input operator “>>”

 extracts data from input “stream” (the keyboard by default)

 skips over white spaces

 extracts only characters of the right form and performs automatic

conversion to the type specified

COMP2012H (Overview) 42

Standard Input/Output

 cout - the standard output stream

Output operator “<<”

 inserts data into the output “stream” (the screen by default)

 Example:

int id, score;

cout << "Enter student ID and score: ";

cin >> id >> score;

cout << "Student ID: " << id << " score: "

<< score << endl;

COMP2012H (Overview) 43

COMP2012H (Overview) 44

// Convert inches to feet and inches

// Input: inches

// Output: feet and inches

#include <iostream>

using namespace std;

#define PI 3.14

int main() {

// inches to feet conversion factor

const int in2feet = 12;

int inches; // number of inches

int feet; // number of feet

cout<< "Enter number in inches: ";

cin >> inches;

// Convert inches to feet and inches

feet = inches / in2feet;

inches = inches % in2feet;

cout << feet << " feet " << inches << " inches " << endl;

cout << “Area of circle of radius 2 units is” << PI * 4 << endl;

return 0;

}

Assignment Conversions

 A floating-point expression assigned to an integer object is rounded down

 An integer expression assigned to a floating-point object is converted to a floating-point
value

 Example 1:

float y = 2.7;

int i = 15;

int j = 10;

i = y; // i is now 2

cout << i << endl;

y = j; // y is now 10.0

cout << y << endl;

COMP2012H (Overview) 45

Assignment Conversions

 Example 2:

int m, n;

double x, y;

m = 3;

n = 2.5; // 2.5 converted to 2 and assigned to n

x = m/n; // 3/2=1 converted to 1.0 and assigned to x

n = x+m/2;

// m/2=1 : integer division

// x+m/2 : double addition because x is double

// convert result of m/2 to double (i.e. 1.0)

// x+m/2=2.0

// convert result of x+m/2 to int (i.e. 2)

// because n is int

COMP2012H (Overview) 46

Example: USD to HKD exchange

 Problem Statement

 Given a collection of nickels (US 5-cent piece) and pennies (US 1-cent piece), find the

equivalent number of Hong Kong dollars and 10-cent pieces.

 Problem Analysis

 Input:

 nickels (integer): number of US nickels (5 cents)

 pennies (integer): number of US pennies (1 cent)

 A US dime is 10 cents

 Output:

 dollars (integer): number HK dollar coins to return

 houji (integer): number HK 10-cent coins to return

 Constraints: None

COMP2012H (Overview) 47

Example: Initial Algorithm

1. Read in the numbers of nickels and pennies

2. Compute the total value in integral US dollars

3. Exchange the integral USD to HK dollars based on

exchange rate

4. Find the number of HK dollar coins and houji coins

5. Display the results

COMP2012H (Overview) 48

Example: Program Skeleton

// File: excoin.cpp

// Determines the number of HK coins to exchange for US coins

#include <iostream>

using namespace std;

int main(){

int nickel; // number of nickels

int penny; // number of pennies

int dollar; // number of HK dollar coins

int houji; // number of HK 10-cent coins

double total_USD; // total value in US$

double total_HKD; // total value in HK$

// Read in the number of nickels and pennies

// Compute the total value in US$

// Compute the total value in HK$ to exchange

// Find the numbers of HK dollar and 10-cent coins

// Display the numbers of HK dollar and 10-cent coins

return 0;

}

COMP2012H (Overview) 49

Example: Refined Algorithm

1. Read in the number of nickels and pennies

2. Compute the total value in US dollars

total_USD = (5 * nickel + penny)/100

3. Compute the total in HK dollars to exchange

total_HKD = total_USD * US2HK

4. Find the number of HK dollar coins and 10-cent coins

total_HK_cent = total_HKD * 100

dollar = total_HK_cent / 100

houji = (total_HK_cent % 100) / 10

5. Display the number of HK dollar and 10-cent coins

COMP2012H (Overview) 50

C++ Arithmetic Operators

 The four operators +, -, *, and / work as we expect with the “normal”

precedence rules (e.g., 5+2*3 = 11)

 Parenthesis can be inserted to change the order of operations (e.g., (5+2)*3

= 21)

 Be careful of integer division -- any remainder is discarded

 The % (modulo) operator gives the remainder of integer division

COMP2012H (Overview) 51

COMP2012H (Overview) 52

// File: excoin.cpp

// Determines the number of HK coins to exchange for US coins

#include <iostream>

using namespace std;

int main(){

const double US2HK = 7.8; // assume exchange rate is US$1 = HK$7.8

int nickel; // number of nickels

int penny; // number of pennies

int dollar; // number of HK dollar coins

int houji; // number of HK 10-cent coins

double total_USD; // total value in US$

int total_HK_cent; // total value in HK cents

double total_HKD; // total value in HK$

// Read in the number of nickels and pennies

cout << "Enter the number of nickels and press return: ";

cin >> nickel;

cout << "Enter the number of pennies and press return: ";

cin >> penny;

// Compute the total value in US$

total_USD = (5 * nickel + penny) / 100.0;

// Compute the total value in HK$ using the assumed exchange rate

total_HKD = total_USD * US2HK;

// Find the value in HK dollars and change

total_HK_cent = total_HKD * 100;

dollar = total_HK_cent / 100;

houji = (total_HK_cent % 100)/10;

// Display the number of HK dollar and 10-cent coins

cout << "The change is HK " << dollar << " dollars and "

<< houji << " 10-cent coins." << endl;

return 0;

}

A faster way:

dollar = total_HKD; // implicit cast

houji = 10 * (total_HKD – dollar);

COMP2012H (Overview) 53

C++ is a Free-Format Language

 Extra blanks or tabs are ignored
x=3;

x = 3 ;

 Blank lines are ignored just like comments

 Code can be indented in any way

 More than one statement can be on one line

int x, y; x=3; y = 10; int z = x+y;

 A single statement can be continued over several lines
int x

=

2;

cout << feet << " feet and "

<< inches << " inches" << endl;

COMP2012H (Overview) 54

Good Programming Style

 Place each statement on a line by itself (except long cout statements)

x = m/n;

 Use blank lines to separate sections of code

 Use the same indentation for all statements in the same block of code {…}.

int main(){

int x;

x = 5;

return 0;

}

COMP2012H (Overview) 55

Good Programming Style

 Use meaningful identifier names
double area, sum, radius;

 Document each variable when it is declared
double area; // area of the circle

double distance; // distance from top to bottom

 Document each segment of code
// Convert inches to feet and inches

feet = inches / in2feet;

inches = inches % in2feet;

 Document the beginning of the program with a header that tells
the purpose of the program

// Convert inches to feet and inches

COMP2012H (Overview) 56

