
Hashing

(N:12)

HO #13

Fall 2015

Gary Chan

2

Outline

 Motivation

 Hashing Algorithms and Improving the Hash Functions

 Collisions Strategies

 Open addressing and linear probing

 Separate chaining

COMP2012H (Hashing)

Breaking the lower bound on comparison-based

search

3

4

Re-thinking Keys Again

 Tree structures discussed so far assume that we can only use

the number (key) for comparisons, no other operations on the

keys are considered

 In practice, however, the keys can be decomposed into smaller

units, for example:

1. Integers consists of digits: can be used as array index

2. Strings consist of letters: We may even perform arithmetic

operations on the letters

COMP2012H (Hashing)

5

Reducing Space with a Hash Table

6

Hashing Concept

 Given a key in the key universe, compute an index into a hash

table

 Index is computed using a hash function

COMP2012H (Hashing) 7

Hash Table

Index = hash_function(Key)

This is an ultra-fast way to search!

Time complexity O(1).

What are the things we need to consider?

1. What is a good hash function for the key.

2. Table size is limited, some keys may map to the

same location! (We call this a collision)

Need to resolve collisions.

8

General Terms and Conditions

 Universe U = {u0 , u1 , . . . , un-1}

 It is relatively easy or efficient to compute some index given a

key

 Hash support operations:

 Find()

 Insert()

 Delete()

 Deletions may be unnecessary in some apps

COMP2012H (Hashing)

9

Hash Tables vs. Trees

 Hash tables are only for problems that require fast search

 Unlike trees

 No notion of order

 remember a tree is sorted if we visit the nodes in-order

 No notion of successor or predecessor in the data structure

 Not efficient to find the range

 min() and max() elements

 Hash tables are generally implemented using an array structure
with fixed size.

COMP2012H (Hashing)

10

Example Applications

 Compilers use hash tables to keep track of declared variables

 On-line spell checkers

 We can “hash” an entire dictionary (or the most common words)

 Allows us to quickly check if words are spelled correctly in constant time

COMP2012H (Hashing)

11

Bit Vector Representation for O(1) Operations

 entry = 0 if key ui is absent; otherwise entry = 1

 Find: test entry

 Insert: Set entry to 1

 Delete: Set entry to 0

 Constant time each, independent of the number of keys!

.

0 1 2 N-2 N-1

COMP2012H (Hashing)

12

Strengths and Weaknesses

 Advantages

 Simple implementation

 Operation can be translated into machine instruction

 Disadvantages

 Need a bit vector as large as the key space

 Wastes too much space in general, especially when the number of actual

keys is much smaller than the universe

 E.g., in a dictionary with words of at most 10 characters, we need a bit

vector size of 2610 ~ 1.4 x 1014 bits = 17.6 Tbytes --- This is very large,

too large to be held in memory for efficient indexing! In reality, the

number of words (keys) is much much smaller than that, i.e., about

200,000 words, and hence we really do not need so much memory to

index all the words.

COMP2012H (Hashing)

13

Hashing

 Let {K0, K1, . . .KN} be the universe of keys

 Let T[0..m-1] be an array representing the hash table, where m

is much smaller than N.

 The most important part of hashing is the hash function:

h: Key universe -> [0..m-1]

 For each key K, h(K) is called the hash value of K and K is

supposed to be stored at T[h(K)]

COMP2012H (Hashing)

14

Hashing

 There are two aspects to the hashing

 We should design the hash function such that it spreads the keys uniformly

among the entries of T.

 This will decrease the likelihood that two keys have the same hash values

 Need a solution when the keys do collide

COMP2012H (Hashing)

15

Example of a Hash Function

 Suppose a dictionary of words, and that our keys are
a string of letters.
 Let’s consider a letter equals its ASCII value

Key = cn-1 cn-2 . . . co

 For example:
‘A’ = 65, ‘Z’ = 90, ‘a’ = 97, ‘z’ = 122

 Our hash function:

(This simply adds the string’s characters values up and takes the modulus by m, where m
is the size of the hash table.)

1

0

01)%()...(
n

i

in mccch

COMP2012H (Hashing)

16

Why is This a Bad Hash Function?

 Hash function:

 This hash function yields the same results for any permutation of

the string

 h(“CAT”) = h(“ACT”) = h(“TAC”)

 English words have many examples of valid permutations similar to the above

 Need a way to consider the position of the characters in the

string

1

0

01)%()...(
n

i

in mccch

COMP2012H (Hashing)

17

Improving the Hash Function

 We can improve the hash function so that the letters

contribute differently according to their positions.

 r is the radix

 Integers: r = 10

 Bit strings: r = 2

 Strings: r = 128

1

0

01)%*()...(
n

i

i

in mrccch

Weight by the ith position

COMP2012H (Hashing)

18

Computing the Hash value

 Need to be careful about overflows in summing up the terms,

since we may add up to a large number

 We can do all computations in modulo arithmetic by taking

modulus at each step

 For example:

sum = 0;

for (int j=0; j < n-1; i++)

sum = (sum + (c_j * r^j) % m) % m;

Take modulus at each

step.

Also for the values r^j, you can pre-compute a table to store these values.

COMP2012H (Hashing)

19

“Rule of Thumbs” on Hash Functions
 Hash table size is generally prime

 Reduces collision due to the modulus operator (% m)

Example: m = 10 (not prime) m=13 (prime)

100 % 10 -> 0 100 % 13 -> 9

200 % 10 -> 0 200 % 13 -> 5

300 % 10 -> 0 300 % 13 -> 1

 m should not divide , for some small integral values of k or a.

 As a counter example, if one makes m=r-1 (i.e., m divides r -1), then all permutations
of the same character string have the same hash value

 When we compute hash functions of strings

 For speed, we often only use a fixed number of elements

 Such as the first 5 characters of the string

 example

“Brown” -> h(“Brown”)

“Schwarzenegger” -> h(“Schwa”)

“Fong” -> h(“FongX”)
For short words, we could use

dummy character (like X), or 0,

ar k

COMP2012H (Hashing)

Linear Open Addressing

 When the key range is too large to use the ideal method, we

use a hash table whose size is smaller than the range and a

hash function that maps several keys into the same position of

the hash table

 The hash function has the form h(k) = x(k) % D

 where x(k) is the computed value based on key k

 D is the size (i.e., number of positions) of the hash table

 Each position is called a bucket

 h(k) is the home bucket

COMP2012H (Hashing) 20

Linear Open Addressing

 In case of collision, search for the next available bucket

 The search for the next available bucket is made by regarding the table

as circular

 The choice of D has a significant effect on the performance of

hashing

 Best results are obtained when D is either a prime number or

has no prime factors less than 20

COMP2012H (Hashing) 21

Open Addressing via Linear Probing: Insertion

 Compute the home bucket L = h(K)

 if T[L] is not empty, consider the hash table as circular:

 If we can’t find a position (the table is completely full), return an

error message

COMP2012H (Hashing) 22

for(i = 0; i < m; i++)

compute L = (h(K) + i) % m;

if T[L] is empty, put K there and stop

An Example

 D = 11

 Add 58: Collision with 80

 Add 24

 Add 35: Collision with 24

 Insertion of 13 will join two clusters

COMP2012H (Hashing) 23

80 40 65

0 1 2 3 4 5 6 7 8 9 10

24 80 58 40 65

0 1 2 3 4 5 6 7 8 9 10

24 80 58 35 40 65

0 1 2 3 4 5 6 7 8 9 10

Searching

 Search begins at the home bucket h(k) for the key k

 Continues by examining successive buckets in the table by

regarding the table as circular until one of the following

happens

1. A bucket containing the element with key k is reached; in this case, we

found the element;

2. An empty bucket is reached; in which case, the element is not found

3. We return to the home bucket; in which case, the element is not found

COMP2012H (Hashing) 24

Hash Functions

Strategies for improved performance:

1. Increase table capacity (less collisions)

2. Use a different collision resolution technique (e.g., hierarchical

hashing where hashing the second time on the home bucket)

3. Use a different hash function

 Hash table capacity

 Size of table is better to be at least1.5 to 2 times the size of the number

of items to be stored

 Otherwise probability of collisions is too high

COMP2012H (Hashing) 25

Clustering in Linear Probing

 We call a block of contiguously occupied table entries a cluster

 Linear probing becomes slow when large clusters begin to form

(primary clustering)

 For example:

 Once h(K) falls into a cluster, the cluster will definitely grow in size by 1

 Larger clusters are easier targets for collision in the future

 If two clusters are only separated by one entry, then inserting one key into

a cluster can merge the two clusters

COMP2012H (Hashing) 26

Deletion

 May require several movement: we cannot simply make the position

empty. E.g., consider deleting 58

 Move begins just after the bucket vacated by the deleted element.

We need to rehash buckets one by one in the remainder of the cluster.

 Clearly, it may lead to a lot of movements involving at worst the

whole table (of O(m), where m is the size of the table)

 To reduce rehashing overhead, we can simply mark the entry

“empty,” which means treating it belonging to the cluster but skipping

it in a cluster inspection

 We need to distinguish it from the never-used bucket at the cluster boundary

COMP2012H (Hashing) 27

24 80 58 35 40 65

0 1 2 3 4 5 6 7 8 9 10

Introduction of a NeverUsed Field

 A more efficient alternative to reduce move

 Introduce the field NeverUsed in each bucket

 Lazy moving or lazy rehashing

 NeverUsed can have only 3 values: {true, false, empty}

 If the entry has never been occupied, NeverUsed is true
 NeverUsed is set to true initially

 When an element is inserted/placed in the bucket, NeverUsed is set to false

 Meaning that the bucket has a valid element

 When an element is deleted

 We simply mark the deleted space as empty

 An empty slot belongs to a cluster but search can simply skip those empty buckets in a
cluster

 An element can be inserted into the empty slot later, turning the NeverUsed to false

 Therefore, deletion may be accomplished by simply setting the position
empty without any data rehashing

 NeverUsed field is never reset to true, and hence over time NeverUsed field
of the buckets will be either false or empty

COMP2012H (Hashing) 28

Introduction of a NeverUsed Field

 A new element may be inserted into the first empty or true bucket
encountered after the home bucket

 For an unsuccessful search, the condition for search to terminate is
when the NeverUsed field equals to true (not empty as it belongs to
the cluster)

 Which is a bucket never been used before

 After a while, almost all buckets have this NeverUsed field equal to
false or empty, and unsuccessful searches examine all buckets

 To improve performance, we must reorganize the table by, for
example, rehashing into a new fresh table

COMP2012H (Hashing) 29

true

(start)
false empty

insertion
insertion

deletion

Hash ADT (No NeverUsed and Deletion) (1/6)

COMP2012H (Hashing) 30

// file hash.h

#ifndef HashTable_

#define HashTable_

#include <iostream.h>

#include <stdlib.h>

#include "xcept.h"

// E is the record

// K is the key

template<class E, class K>

class HashTable {

public:

HashTable(int divisor = 11); // constructor

~HashTable() {delete [] ht; delete [] empty;}

bool Search(const K& k, E& e) const;

HashTable<E,K>& Insert(const E& e);

void Output();// output the hash table

// rehashing needs to be done everytime a record is deleted

private:

int hSearch(const K& k) const; // helper function for Search and Insert

int D; // hash function divisor; hash table size

E *ht; // hash table array

bool *empty; // 1D array on whether the entry is empty or not

};

Hash ADT (No Deletion Method) (2/6)

COMP2012H (Hashing) 31

// constructor

template<class E, class K>

HashTable<E,K>::HashTable(int divisor)

{// Constructor.

D = divisor;

// allocate hash table arrays

ht = new E [D]; // holding records

empty = new bool [D];

// set all buckets to state true

for (int i = 0; i < D; i++)

empty[i] = true; // no keys/records there

}

Hash ADT (No Deletion Method) (3/6)

COMP2012H (Hashing) 32

// Intermediate function for Search and Insert

// Search an open addressed table.

// Return an array index corresponding to ONE of the following 3 cases:

// Case 1. If no match, return the next empty bucket from home bucket of k

// Case 2. If matched, return the matched bucket of k

// Case 3. If no match and a full hash table, its non-empty home bucket

template<class E, class K>

int HashTable<E,K>::hSearch(const K& k) const

{

int i = k % D; // home bucket

int j = i; // start at home bucket

do {

// if end of a cluster or a match, return j

// Should overload key casting for ht[j] == k

if (empty[j] || ht[j] == k)

return j; // Case 1 or 2

j = (j + 1) % D; // linearly probe the next bucket

} while (j != i); // returned to home?

return j; // Case 3: wrapped around, table is full, i.e., j == i

}

Hash ADT (No Deletion Method) (4/6)

COMP2012H (Hashing) 33

template<class E, class K>

bool HashTable<E,K>::Search(const K& k, E& e) const

{

// Put element that matches k in e.

// Return false if no match.

int b = hSearch(k);

if (empty[b] || ht[b] != k) // implicit cast on ht[b]

return false; // not found

e = ht[b]; // need assignment operator

return true;

}

Hash ADT (No Deletion Method) (5/6)

COMP2012H (Hashing) 34

template<class E, class K>

HashTable<E,K>& HashTable<E,K>::Insert(const E& e)

{

// Hash table insert.

K k = e; // extract key by casting

int b = hSearch(k);

// check if insert is to be done

if (empty[b]) { // Case 1: not found

empty[b] = false;

ht[b] = e;

return *this;}

// no insert, check if duplicate or full

if (ht[b] == k) throw BadInput(); // Case 2: duplicate

throw NoMem(); // Case 3: table full, cannot insert

}

Hash ADT (No Deletion Method) (6/6)

COMP2012H (Hashing) 35

template<class E, class K>

void HashTable<E,K>::Output()

{

for (int i = 0; i< D; i++) {

if (empty[i]) cout << "empty" << endl;

else cout << ht[i] << endl; // need << overloading

}

}

#endif

Open Addressing: Linear Probing

 Vulnerable to clustering

 Contiguous occupied positions are easy targets for collisions

 Cluster grows as collision occurs

 Clusters may merge with each other

 This results in increased expected search time

 Need to spread out the clusters

COMP2012H (Hashing) 36

Performance

 Let b be the number of buckets in the hash table

 n elements are present in the table

 Worst case search and insert time is Θ(n) (all n keys have the

same home bucket)

 Average performance: Un and Sn be the average number of

buckets examined during an unsuccessful and successful search,

respectively, and α = n/b be the load factor:

COMP2012H (Hashing) 37

Un ≈
1

2
 1 +

1

 1− α 2
 Sn ≈

1

2
 1 +

1

1 − α

An Application Example

 A hash table is to store up to 1,000 elements. Need to find its

hash table size.

 Successful searches should require no more than 4 bucket

examination on average and unsuccessful searches should

examine no more than 50.5 buckets on average

 i.e., Sn <= 4 α <= 6/7

 i.e., Un <= 50.5 α <= 0.9

 We hence require α = min(6/7, 0.9) = 6/7 and therefore b >=

1167

 We choose D to be 37 ×37 = 1369 (no prime factors less than

20)

COMP2012H (Hashing) 38

Quadratic Probing

 Insertion

 Compute L = h(K)

 Quadric jump away from its home bucket

 If T[L] is not empty:

 Helps to eliminate primary clustering

 However, if the table gets too full, this approach is not

guaranteed of finding an empty slot!

 It may also never visit the home bucket again.

COMP2012H (Hashing) 39

for(i = 0; i < m; i++)

compute L = (h(K) + i*i) % m;

if T[L] is empty, put K there and stop

Double Hashing

 To alleviate the problem of primary clustering

 Use a second hash function h2 when collision occurs

 Resolve collision by choosing the subsequent positions with a

constant offset independent of the primary position

 Incrementally jump away from its home bucket in constant step

size depending on the key

 H(Ki, 0) = h(Ki)

 H(Ki, 1) = (H(Ki, 0) + h2(Ki)) mod m

 H(Ki, 2) = (H(Ki, 1) + h2(Ki)) mod m

 . . .

 H(Ki,m) = (H(Ki,m−1) +h2(Ki)) mod m

COMP2012H (Hashing) 40

Choice of h2

 For any key K, h2(K) must be relatively prime to the table size m

 Otherwise, we will only be able to examine a fraction of the

table entries

 For example, if h2(K) = m/2 (not relatively prime to m), then for

h(K) = 0 we can only examine the entries T[0] and T[m/2] and

nothing else!

 The only solution is to make m prime, and choose r to be a

prime smaller than m, and set h2(K) = r − (K mod r)

 E.g., if m = 37, we may pick r = 23 and hence h2(K) = 23 – K mod 23

 We may as well use r = 11, and hence h2(K) = 11 – K mod 11

COMP2012H (Hashing) 41

Analysis of Open Addressing for Uniform Hashing

42

Analysis of Open Addressing for Uniform Hashing

(Cont.)

43

Collision Resolution by Chaining

44

Hashing With Chains: Separate Chaining

 Maintaining chains of elements that have the same home bucket

 As each insert is preceded by a search, it is more efficient to

maintain the chains in ascending order of the key values

 One needs to check two conditions:

while ((node != NULL) && (node -> key < search_key))…

COMP2012H (Hashing) 45

0

1 /

2 /

3

4 /

5

11 33 55 66 /

36 69 /

16 49 82 /

Improved Implementation

 Adding a tail node to the end of each chain with key at least as

large as any element to be inserted into the table

 Make comparisons more efficient as no NULL comparison is

needed (while (node->key < search_key)…)

COMP2012H (Hashing) 46

0

1

2

3

4

5

11 33 55 66

36 69

16 49 82

∞ /

∞ /

∞ /

∞ /

∞ /

∞ /

Space Requirement:

Linear Probing vs. Separate Chaining

 n records of size s bytes; pointer of size p bytes; int takes q

bytes

 Hash table has b>=n buckets

 Space requirement

 Chaining: bp + n(s+p)

 Open linear addressing: b(s + q) (empty is an integer array)

 Chaining takes less space than linear addressing whenever

n < b(s+q-p)/(s+p)

 The expected performance is superior to that of linear open addressing

COMP2012H (Hashing) 47

Dynamic Hash Tables

48

Chaining Analysis

49

Comparison between BST and hash tables

50

BST Hash tables

Comparison-based Non-comparison-based

Keys stored in sorted order Keys stored in arbitrary order

More operations are supported: min,

max, neighbor, traversal
Only search, insert, delete

Can be augmented to support range

queries
Do not support range queries

In C++: std::map In C++: std::unordered_map

Remarks on Hashing

 Ultra-fast searching method

 Best case O(1) (constant time) to find a key

 Very useful algorithm that requires intensive searching

 Like spell-checker

 Some database applications will build temporary hash tables for quick-

access to data

 Limited operations as compared to trees

 Only provides insert, search, and possibly delete

 No notion of order, min, max, etc.

COMP2012H (Hashing) 51

