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Binary Tree Terminology

 Go to the supplementary notes
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Linked Representation of Binary Trees

 The degree of a node is the number of children it has.  The 
degree of a tree is the maximum of its element degree.

 In a binary tree, the tree degree is two

 Each node has two links

 one to the left child of the node

 one to the right child of the node

 if no child node exists for a node, the link is set to NULL
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Binary Trees as Recursive Data Structures

 A binary tree is either empty …

or

 Consists of a node called the root

 Root points to two disjoint binary (sub)trees

left and right (sub)tree
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Tree Traversal is Also Recursive (Preorder example)

If the binary tree is empty then

do nothing

Else 

N: Visit the root, process data

L: Traverse the left subtree

R: Traverse the right subtree
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Anchor

Inductive/Recursive step



3 Types of Tree Traversal

 If the pointer to the node is not NULL:

 Preorder: Node, Left subtree, Right subtree

 Inorder: Left subtree, Node, Right subtree

 Postorder: Left subtree, Right subtree, Node
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Inductive/Recursive step

template<class T>

void BinaryTree<T>::PreOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Preorder traversal.

if (t) {Visit(t);

PreOrder(Visit, t->LeftChild);

PreOrder(Visit, t->RightChild);

}

}

template <class T>

void BinaryTree<T>::InOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Inorder traversal.

if (t) {InOrder(Visit, t->LeftChild);

Visit(t);

InOrder(Visit, t->RightChild);

}

}

template <class T>

void BinaryTree<T>::PostOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Postorder traversal.

if (t) {PostOrder(Visit, t->LeftChild);

PostOrder(Visit, t->RightChild);

Visit(t);

}

}



Traversal Order

 Given expression

A – B * C + D

 Child node: operand

 Parent node: corresponding operator

 Inorder traversal: infix expression

A – B * C + D

 Preorder traversal: prefix expression

+ - A * B C D

 Postorder traversal: postfix or RPN expression

A B C * - D +
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Preorder, Inorder and Postorder Traversals
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A Faster Way for Tree Traversal

 You may eye-ball the solution without using recursion.

 First emanating from each node a “hook.” Trace from left to 

right an outer envelop of the tree starting from the root.  

Whenever you touch a hook, you print out the node.

 Preorder: 

 put the hook to the left of the node

 Inorder: 

 put the hook vertically down at the node

 Postorder: 

 put the hook to the right of the node
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Another Example (This is a Search Tree)

 Inorder (Left, Visit, Right): 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

 Preorder (Visit, Left, Right): 15, 6, 3, 2, 4, 7, 13, 9, 18,17, 20

 Postorder (Left, Right, Visit): 2, 4, 3, 9, 13, 7, 6, 17, 20,18, 15
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Output Fully Parenthesized Infix Form
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template <class T>

void Infix(BinaryTreeNode<T> *t)

{// Output infix form of expression.

if (t) {

cout << ’(’;

Infix(t->LeftChild);  // left operand

cout << t->data;      // operator

Infix(t->RightChild); // right operand

cout << ’)’;

}

}

+

/ \ returns ((a)+(b))

a  b



Infix to Prefix (Pre-order Expressions)

 Infix = In-order expression

1. Infix to postfix

2. postfix to build an expression tree 

1. Push operands into a stack

2. If an operator is encountered, create a binary node with the operator 

as the root, push once as right child, push the 2nd time as left child, and 

push the complete tree into the stack

3. With the expression tree, traverse in preorder manner

 Parent-left-right
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Binary Search Tree



Search on a Sorted Sequence
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Linear Search: Vector Based
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template <typename t>

void LinearSearch (const vector<t> &v, const t &item, 

boolean &found, int &loc)

{

found = false;  loc = 0; 

for ( ; ; )

{

if (found || loc == v.size())

return;

if (item == v[loc])

found = true;

else

loc++;

}

}



Binary Search: Vector Based
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template <typename t>

void LinearSearch (const vector<t> &v, const t &item, 

boolean &found, int &loc)

{

found = false;

int first = 0;

last = v.size() - 1; 

for ( ; ; )

{

if (found || first > last) return;

loc = (first + last) / 2;

if (item < v[loc]) 

last = loc - 1;

else if (item > v[loc])

first = loc + 1;

else

/* item == v[loc] */

found = true;  

}

}

May be replaced

by recursive codes 

with additional 

function parameters 

first and last



Binary Search
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Dictionary

 A dictionary is a collection of elements

 Each element has a field called key

 No two elements have the same key value
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AbstractDataType Dictionary {

instances

collection of elements with distinct keys

Operations

Create (): create an empty dictionary

Search (k,x): return element with key k in x;

return false if the operation

fails, true if it succeeds

Insert (x): insert x into the dictionary

Delete (k,x): delete element with key k and

return it in x

}



Binary Search Tree (BST) 

 Collection of data elements in a binary tree structure

 Stores keys in the nodes of the binary tree in a way so that 

searching, insertion and deletion can be done efficiently

 Every element has a key (or value) and no two elements have 

the same key (all keys are distinct)

 The keys (if any) in the left subtree of the root are smaller than 

the key in the root

 The keys (if any) in the right subtree of the root are larger than 

the key in the root

 The left and right subtrees of the root are also binary search 

trees
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Binary Search Tree 
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for any node y in this subtree

key(y) < key(x)

x

for any node z in this subtree

key(z) > key(x)



Examples of BST

 For each node x,

values in left subtree ≤ value in x ≤ value in right subtree

 a) is NOT a search tree, b) and c) are search trees
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Binary Search Tree Property

 Two binary search trees representing the same set
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Sorting: Inorder Traversal for a Search Tree

 Print out the keys in sorted order

 A simple strategy is to

1. print out all keys in left subtree in sorted order;

2. print 15;

3. print out all keys in right subtree in sorted order;
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Indexed Binary Search Tree

 Derived from binary search tree by adding another field LeftSize to each 
tree node

 LeftSize gives the number of elements in the node’s left subtree plus one

 An example (the number inside a node is the element key, while that outside 
is the value of LeftSize)

 It is the rank of the node for the search tree rooted at that node (rank is the 
position in the sorted order)

 Can be used to figure out the rank of the node in the tree

COMP2012H (Binary tree) 25

15

18

20

12

25

30

4

2

1 1 1

1 5

30

2

45

3

2

1

1



Tree Search

 If we are searching for 15, then we are done

 If we are searching for a key < 15, then we should search for it 

in the left subtree

 If we are searching for a key > 15, then we should search for it 

in the right subtree
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An Example

Search for 9:

1. compare 9:15(the root), go to left 

subtree;

2. compare 9:6, go to right subtree;

3. compare 9:7, go to right subtree;

4. compare 9:13, go to left subtree;

5. compare 9:9, found it!
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Searching in BST

Assumption: All keys are distinct
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Building a BST from a sorted array
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Find Min and Max

15

6 18

3 8 30

26

Minimum element

is always the 

left-most node.

Maximum element

is always the 

right-most node.

Time Complexity

Worse case?

Height of tree, 

which can be the 

total number of 

nodes if tree is 

not balanced!  

5
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Successor

The successor of a node x is

defined as:

 The node y, whose key(y) is the successor of key(x) in 

sorted order 

sorted order of this tree. (2,3,4,6,7,9,13,15,17,18,20)

Successor of 2
Successor of 6

Successor of 13

Some examples:

Which node is the successor of 2?

Which node is the successor of 9?

Which node is the successor of 13?

Which node is the successor of 20?  Null

Successor of 9
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Finding Successor:
Three Scenarios to Determine Successor

Successor(x)

x has right 

descendants

=> minimum( right(x) )

x has no right 

descendants

x is the left child of 

some node

=> parent(x)

x is the right 

child of some 

node

Scenario I

Scenario II Scenario III
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Scenario I: Node x Has a Right Subtree

By definition of BST, all items greater than

x are in this right sub-tree.

Successor is the minimum( right( x ) )

maybe null
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Scenario II: Node x Has No Right Subtree 

and x is the Left Child of Parent (x)

Successor is parent( x )

Why? The successor is the node whose

key would appear in the next sorted order.

Think about traversal in-order.  Who would

be the successor of x?  

The parent of x!
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Scenario III: Node x Has No Right Subtree and Is Not a 

Left-Child of an Immediate Parent

Keep moving up the tree until

you find a parent which branches

from the left().Successor of x

Stated in Pseudo code.

y

x
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Successor Pseudo-Codes

Scenario I

Scenario III

Verify this code

with this tree.

Find successor of 

3    4

9   13

13   15

18   20

Scenario II

Note that parent( root ) = NULL
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Problem

 If we use a “doubly linked” tree, finding parent is easy.

 But usually, we implement the tree using only pointers to the left and right 

node.  So, finding the parent is tricky.

For this implementation we need to use a Stack.

class Node

{

int data;

Node *left;

Node *right;

Node *parent;

};

class Node

{

int data;

Node *left;

Node *right;

};
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Use a Stack to Find Successor

PART I

Initialize an empty Stack s.

Start at the root node, and traverse the 

tree until we find the node x.  Push all 

visited nodes onto the stack.

PART II

Once node x is found, find successor

using 3 scenarios mentioned before.

Parent nodes are found by popping 

the stack!
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An Example

15

6

7

Stack s

Successor(root, 13)

Part I

Traverse tree from root to find 13

order -> 15, 6, 7, 13

push(15)

push(6)

push(7)

13 found (x = node 13)
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Example

15

6

7

Stack s

Successor(root, 13)

Part II

Find Parent  (Scenario III)

y=s.pop()

while y!=NULL and x=right(y)

x = y;

if s.isempty()

y=NULL

else

y=s.pop()

loop

return y

y =pop()=15

->Stop right(15) != x

return y as successor!

x = 13

y =pop()=7

y =pop()=6



A Leaner Approach for Case III
 Observe that:

 x must be in the left branch of its successor y, because it is smaller in value

 To get to x from left( y ), we always traverse right, i.e., the value is increasing beyond left(y).  
The value never exceeds y, as x is on the left of y.  

 If we plot the values from y to x against the nodes visited, it is hence of a “V” shape, starting 
from y, dropping to some low value, and then increasing gradually to x, a value below y

 Using stack storing the path from the root to x, we hence can detect the right turn 
in the reverse path simply as follows:

 Keep popping the stack until the key is higher than the value x.  This must be its successor.

while (!s.empty()){

y = s.pop();

if( y > x)

return y; // the successor

}

return NULL;  // empty stack; successor not found
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Insertion

 Insert a new key into the binary 

search tree

 The new key is always inserted as 

a new leaf

 Example: Insert 13 ...
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Insertion: Another Example

 First add 80 into an existing tree

 Then add 35 into it
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Insert into a BST

44

The insertion time is O(height 

of the BST)
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Inserting into a BST (1/2)
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template<class E, class K>

BSTree<E,K>& BSTree<E,K>::Insert(const E& e)

{

// Insert e if not duplicate.

BinaryTreeNode<E> *p = this->root, // search pointer

*pp = 0; // parent of p

// find place to insert

while (p) {

// examine p->data

pp = p;

// move p to a child

if (e < p->data) p = p->LeftChild;

else if (e > p->data) p = p->RightChild;

else throw BadInput(); // duplicate

}

May be replaced

by recursive codes 

with an additional 

function parameter 

of binary tree node 

pointer



Inserting into a BST (2/2)
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// get a node for e and attach to pp

BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);

if (root) {

// tree not empty

if (e < pp->data) pp->LeftChild = r;

else pp->RightChild = r;

}

else // insertion into empty tree

root = r;

return *this;

}
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BST Deletion: Delete Node z from Tree

Three cases for deletion

Case I Case II

Node z is a leaf

Set z parent’s pointer 

to  z to NULL

Node z has exactly 1 (left or right) child

Modify appropriate parent(z) to 

point to z’s child (Parent adoption)



Case III: Node z Has 2 Children
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Step 1.  

Find successor y of ‘z’  (i.e. y = successor(z))

Since z has 2 children, successor is y=minimum(right(z))

Successor y of z will have

no children or only a right-child.

Why?  Look at the definition of 

minimum(..) 

Step 2.

Swap keys of z and y.

Now delete node y (which now has value z)!

This deletion is either case I or II.

y y

z zDelete

this node.

Case I Case II

(deletion of node “z” is

always going to be Case I or II)



Special Case: 

Deleting the Root with 1 Child Descendant

 Move the root to the child
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A Deletion Example

Three possible cases to delete a node x from a BST

1. The node x is a leaf
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A Deletion Example (Cont.)

2. The node x has one child
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A Deletion Example (Cont.)

3. x has two children
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i) Replace contents of x with 

inorder successor (smallest 

value in the right subtree)

ii) Delete node pointed to by xSucc

as described for cases 1 and 2

A

F

E

G

H

J

O

I M P

K N

L

C

B D

x

xSucc

free storage

A

F

E

G

H

K

O

I M P

K N

L

C

B D

x

xSucc



Another Deletion Example

 Removing 40 from (a) results in (b) using the smallest element in 

the right subtree (i.e., the successor)
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Another Deletion Example (Cont.)

 Removing 40 from (a) results in (c) using the largest element in 

the left subtree (i.e., the predecessor)
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Another Deletion Example (Cont.)

 Removing 30 from (c), we may replace the element with either 5 

(predecessor) or 31 (successor). If we choose 5, then (d) results.
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Deletion Code (1/4)

 First Element Search, and then Convert Case III, if any, to Case I 

or II
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template<class E, class K>

BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e)

{

// Delete element with key k and put it in e.

// set p to point to node with key k (to be deleted)

BinaryTreeNode<E> *p = root, // search pointer

*pp = 0; // parent of p

while (p && p->data != k){

// move to a child of p

pp = p;

if (k < p->data) p = p->LeftChild;

else p = p->RightChild;

}



Deletion Code (2/4)
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if (!p) throw BadInput(); // no element with key k

e = p->data; // save element to delete

// restructure tree

// handle case when p has two children

if (p->LeftChild && p->RightChild) {

// two children convert to zero or one child case

// find predecessor, i.e., the largest element in 

// left subtree of p

BinaryTreeNode<E> *s = p->LeftChild,

*ps = p; // parent of s

while (s->RightChild) {

// move to larger element

ps = s;

s = s->RightChild;

}



Deletion Code (3/4)
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// move from s to p

p->data = s->data;

p = s;   // move/reposition pointers for deletion

pp = ps;

}

// p now has at most one child

// save child pointer to c for adoption

BinaryTreeNode<E> *c;

if (p->LeftChild) c = p->LeftChild;

else c = p->RightChild; // may be NULL

// deleting p

if (p == root) root = c;  // a special case: delete root

else {

// is p left or right child of pp?

if (p == pp->LeftChild) pp->LeftChild = c;//adoption

else pp->RightChild = c;

}



Deletion Code (4/4)
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delete p;

return *this;

}



Implementation: ADT of Binary Search Tree (BST)

 Construct an empty BST

 Determine if BST is empty

 Search BST for given item

 Insert a new item in the BST

 Need to maintain the BST property

 Delete an item from the BST

 Need to maintain the BST property

 Traverse the BST

 Visit each node exactly once

 The inorder traversal visits the nodes in ascending order
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ADT of a BST
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AbstractDataType BSTree {

instances

binary trees, each node has an element with a

key field; all keys are distinct; keys in the left

subtree of any node are smaller than the key in

the node; those in the right subtree are larger.

operations

Create(): create an empty binary search tree

Search(k, e): return in e the element/record with key k

return false if the operation fails,

return true if it succeeds

Insert(e): insert element e into the search tree

Delete(k, e): delete the element with key k and

return it in e

Ascend(): output all elements in ascending order of 

key

}



A Simple Implementation without Inheritance

 tree_codes (BST.h and treetester.cpp)

62

template <typename DataType>

class BST

{

public:

// … member functions supporting BST operations 

private:

/***** Binary node class *****/

class BinNode 

{

public:

DataType data;

BinNode * left;

BinNode * right;

// … BinNode constructors

};// end of class BinNode declaration

typedef BinNode *BinNodePointer;

// … Auxiliary/Utility functions supporting member functions

/***** Data Members *****/

BinNodePointer myRoot;   // the root of the binary search tree

}; // end of class template declarationCOMP2012H (Binary tree)



Another Implementation with Inheritance, function 

pointers, and exception handling

 tree2_codes

 Binary search tree is derived from binary tree

 E is the record, and K is the key

 bst.h:
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template<class E, class K>

class BSTree : public BinaryTree<E> {

public:

bool Search(const K& k, E& e) const;

BSTree<E,K>& Insert(const E& e);

BSTree<E,K>& InsertVisit

(const E& e, void(*visit)(E& u));

BSTree<E,K>& Delete(const K& k, E& e);

void Ascend() {InOutput();}

};



Skeleton of tree2_codes

 btnode.h: the node structure to be used in a binary tree

 binary.h: binary tree
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template<class T>

class BinaryTree {

//… some friend functions

public:

//… member functions and note the use of

// function pointers

private:

BinaryTreeNode<T> *root;  // pointer to root

//helper/utility functions and static functions

};

template <class T>

class BinaryTreeNode {

//… friend functions

public:

// … constructors

private:

T data;    // data is a record

BinaryTreeNode<T> *LeftChild,  // left subtree

*RightChild; // right subtree

};



Code Implementation (tree2_codes)

 bst.h

 datatype.h: DataType is to be used in the binary node with field data

65

#ifndef DataType_

#define DataType_

class DataType {

friend ostream& operator<<(ostream&, DataType);

public:

operator int() const {return key;} // implicit cast to obtain key 

int key;  // element key, maybe hashed from ID

char ID;  // element identifier

};

ostream& operator<<(ostream& out, DataType x)

{out << x.key << ' ' << x.ID << ' '; return out;}

#endif

template<class E, class K>

bool BSTree<E,K>::Search(const K& k, E &e) const

{// Search for element that matches k.

// pointer p starts at the root and moves through

// the tree looking for an element with key k

BinaryTreeNode<E> *p = this->root;

while (p) // examine p->data

if (k < p->data) p = p->LeftChild;  //implicit cast

else if (k > p->data) p = p->RightChild;

else {// found element

e = p->data;   // copy the record to e

return true;}

return false;

}

May be replaced

by recursive codes
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Time Complexity of Binary Search Trees

 Find(x)  O(height of tree)

 Min(x) O(height of tree)

 Max(x) O(height of tree)

 Insert(x) O(height of tree)

 Delete(x) O(height of tree)

 Traverse O(N)  
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Binary Search Trees

 Problem

 How can we predict the height of the tree?

 Many trees of different shapes can be composed of the same 

data

 How to control the tree shape?



Problem of Lopsidedness

 Trees can be unbalanced

 Not all nodes have exactly 2 child nodes
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Problem of Lopsidedness
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Processing time affected 

by "shape" of tree
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Binary Search Tree

4

2 6

1 3 5 7

4

2

6

1 3

5

7

Tree 1

Same data as Tree 2
Tree 2

Same data as Tree 1

Which tree would you prefer to use?

(we say this tree is “balanced”)

(this tree is “unbalanced”)
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Tree Examples

(Tree resulting from randomly generated input)
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Tree Examples

(Unbalanced tree)



How Fast is Sorting Using BST?

 n numbers (n large) are to be sorted by first constructing a binary tree and 
then read them in inorder manner

 Bad case: the input is more or less sorted

 A rather “linear” tree is constructed

 Total steps in constructing a binary tree: 1 + 2 + … + n = n(n+1)/2 ~ n2

 Total steps in traversing the tree: n

 Total ~ n2

 Best case: the binary tree is constructed in a balanced manner
 Depth after adding i numbers: log(i)

 Total steps in constructing a binary tree: log1 + log2 + log3 + log4 + … + log n < 
log n + log n + … + log n = n log n

 Total steps in traversing the tree: n

 Total ~ n log n , much faster

 It turns out that one cannot sort n numbers faster than nlog n

 For any arbitrary input, one can indeed construct a rather balanced binary 
tree with some extra steps in insertion and deletion

 E.g., An AVL tree (two Soviet inventors, G. M. Adelson-Velskii and E. M. Landis, 1962)

COMP2012H (Binary tree) 73



COMP2012H (Binary tree) 74

An AVL Tree  A Rather Balanced Tree for 

Efficient BST Operations (See Animation)

(Balanced Tree . .  This is actually a very good tree called AVL tree)



AVL Trees

(Balanced Trees)

The name comes from the inventors: 

Adelson-Velskii and Landis Trees



COMP2012H (Binary tree) 76

AVL Tree Performance

 The height with n nodes is O(log n)

 For every value of n, there exists an AVL tree

 An n-element AVL search can be done in O(log n) time

 Insertion takes O(log n) time

 Deletion takes O(log n) time
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Idea of AVL

 Make the binary tree a balanced tree

 What affects the tree’s shape?

 Insertion()

 Deletion()

 So, let’s modify the way we do insertions and deletions

 We need some definitions first . . 



Height of a node

78

The height of a node in a tree is the number of edges on the longest 

downward path from the node to a leaf

Node height = max(left child height, right child height) +1

Leaves: height = 0

Tree height = root height

Empty tree: height = −1
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An Alternative Definition on the Height of a Node

 Height of a leaf is 1

 Height of a null pointer is 0

 The height of an internal node is the maximum height of its 

children plus 1

 Slightly different than our previous definition of height, which 

counted the number of edges
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Height of Node example

z

x

y

1

0

X’s right tree height 3X’s left tree height 2

y’s left tree height 1

y’s left tree height 0

z’s right tree height 2z’s left tree height 1

What is the height of x?  Maximum child height + 1, so height(x) = 4.



Balanced Binary Search Tree: AVL Tree
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Height of an AVL-tree
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Height of an AVL-tree
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How does the AVL tree work?

 After insertion and deletion we will examine the tree structure 

and see if any nodes violates the AVL tree property

 If the AVL property is violated, it means the heights of left(x) 

and right(x) differ by exactly 2

 If it does violate the property we can modify the tree structure 

using “rotations” to restore the AVL tree property



Restoring balance after an insertion
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Rotations

 Two types of rotations

 Single rotations at the imbalance point

 two nodes are “rotated”

 Double rotations at the imbalance point

 three nodes are “rotated”

 We’ll see them first and see when to use them later



The Left-left Single Rotation (Case 1):

Height( left(left(x)) ) = h+1
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Rotate x with the left child of y
(pay attention to the resulting sub-trees positions)

First imbalance point from the leave:

left(x) – right(x) = 2

h+2

x’s new height 

= h+1

(Note that the height of B can be h+1, in which case x’s new height would be h+2)
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Single Rotation - Example

Tree is an AVL tree by definition.

h

h+1
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Add a node 02

h

h+2

Node 02 added

Tree violates the AVL definition!

Perform rotation.

First imbalance point from the leave
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Example

Tree has this form.

h

h
h+1

A

B

C

x

y
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Example – After Rotation

Tree has this form.

A

B C

x

y
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Right-Right Single Rotation (Case 2):

Height( right(right(x)) ) = h+1

Rotate x with the right child of y
(pay attention to the resulting sub-trees positions)

AVL property is first violated at x from the leave:

left(x) – right(x) = -2

h+2

x’s new height 

= h+1

(Note that the height of B can be h+1, in which case x’s new height would be h+2)
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Single Rotation

 Sometimes a single rotation fails to solve the problem

k2

k1

X

Y

Z

k1

X

Y

Z

k2
h+2

h

h

h+2

• In such cases, we need to use a double-rotation

h+1
h+1
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Right-Left Double Rotations (Case 3):

Height( right(left(x)) ) = h+1

Double-rotate x with its left child y and y’s right child z
(pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z:

1. Single rotate z upwards with y, pushing y down

2. Single rotate z upwards again with x, pushing x down in another 

branch

First imbalance point

x’s new height 

= h+1

y’s new height 

= h+1

z’s new height 

= h+2
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Double Rotations: Case 4

Height( left(right(x)) ) = h+1

Double-rotate x with its right child y and y’s left child z

(pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z (similar as before):

Single rotate z upwards with y, pushing y down

Single rotate z upwards again with x, pushing x down in another branch

First imbalance point

x’s new height 

= h+1

y’s new height 

= h+1

z’s new height 

= h+2
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Double Rotation - Example

Tree is an AVL tree by definition.

h

h+1

Delete node 94
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Example

AVL tree property is violated.

h
h+2
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Example

Tree has this form.

B1 B2

C

A

x

y

z
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After Double Rotation

A B1 B2 C

xy

z

Tree has this form



Insertion
Part 1. Perform normal BST insertion

Part 2. Check and correct AVL properties

Trace back on the path from the inserted leaf all the way towards the 
root:

 Check to see if heights of left(x) and right(x) differ at most by 1
 If not, we know x is the imbalance point (the height of x is h+3)

 If left(x) is higher (h+2), then
 If left(left(x)) is of height h+1, we single rotate with x’s left child, 

i.e., left(x) (case 1)

 Otherwise [right(left(x)) is higher (h+1)] we double rotate with 
x’s left child, i.e., left(x) (case 3)

 Otherwise, height of right(x) is longer (h+2)
 If right(right(x)) is of height h+1, then we rotate with x’s right 

child, i.e., right(x) (case 2)

 Otherwise [left(right(x)) is higher (h+1)] we double rotate with 
x’s right child, i.e., right(x) (case 4)

* Rotations may stop somewhere leading to the root.  Remember to make the 
rotated node the new child of parent(x)
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Insertion

 The time complexity to perform a rotation is O(1)

 The time complexity to find a node that violates the 

AVL property is dependent on the height of the tree 

(which is log(N))

 The height of a node can be found in O(N) time.

 The height of a node can also be more efficiently 

stored in a node, and dynamically updated locally 

each time insertion or deletion occurs.  In this way, the 

height can be accessed in O(1) time.

 In this case, the insertion takes O(log n) time
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Deletion

 Perform normal BST deletion

 Perform exactly the same checking as for insertion to restore the 

tree property
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Note

 There are other variations in the way AVL trees are 
implemented.  These notes present a nice way that treats 
insertion and deletion the same.

 All implementations have the same idea, detect an 
“imbalance” in height for a node and perform corrections 
via single or double rotations.

 Red-black tree (more complicated, but more efficient in 
terms of space; see textbook)
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Summary AVL Trees

 Maintains a balanced tree

 Modifies the insertion and deletion routine

 Performs single or double rotations to restore structure 

 Requires a little more work for insertion and deletion

 But, since trees are mostly used for searching

 More work for insert and delete is worth the performance gain for 
searching

 Guarantees that the height of the tree is O(logn)

 The guarantee directly implies that functions find(), min(), and 
max() will be performed in O(logn)


