
Binary Tree

(N:12)

H.O.#12

Fall 2015

Gary Chan

Outline

 Binary tree terminology

 Tree traversals: preorder, inorder and postorder

 Dictionary and binary search tree

 Binary search tree operations

 Search

 min and max

 Successor

 Insertion

 Deletion

 AVL tree for tree balancing

COMP2012H (Binary tree) 2

Binary Tree Terminology

 Go to the supplementary notes

COMP2012H (Binary tree) 3

Linked Representation of Binary Trees

 The degree of a node is the number of children it has. The
degree of a tree is the maximum of its element degree.

 In a binary tree, the tree degree is two

 Each node has two links

 one to the left child of the node

 one to the right child of the node

 if no child node exists for a node, the link is set to NULL

COMP2012H (Binary tree) 4

Left child Right child

left right

data

79

13

32

95

42

16

32

79
/

42

13
/ /

95
/ /

16
/ /

root

Binary Trees as Recursive Data Structures

 A binary tree is either empty …

or

 Consists of a node called the root

 Root points to two disjoint binary (sub)trees

left and right (sub)tree

COMP2012H (Binary tree) 5

Anchor

Inductive step

r
left

subtree
right
subtree

Tree Traversal is Also Recursive (Preorder example)

If the binary tree is empty then

do nothing

Else

N: Visit the root, process data

L: Traverse the left subtree

R: Traverse the right subtree

COMP2012H (Binary tree) 6

Anchor

Inductive/Recursive step

3 Types of Tree Traversal

 If the pointer to the node is not NULL:

 Preorder: Node, Left subtree, Right subtree

 Inorder: Left subtree, Node, Right subtree

 Postorder: Left subtree, Right subtree, Node

COMP2012H (Binary tree) 7

Inductive/Recursive step

template<class T>

void BinaryTree<T>::PreOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Preorder traversal.

if (t) {Visit(t);

PreOrder(Visit, t->LeftChild);

PreOrder(Visit, t->RightChild);

}

}

template <class T>

void BinaryTree<T>::InOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Inorder traversal.

if (t) {InOrder(Visit, t->LeftChild);

Visit(t);

InOrder(Visit, t->RightChild);

}

}

template <class T>

void BinaryTree<T>::PostOrder(

void(*Visit)(BinaryTreeNode<T> *u),

BinaryTreeNode<T> *t)

{// Postorder traversal.

if (t) {PostOrder(Visit, t->LeftChild);

PostOrder(Visit, t->RightChild);

Visit(t);

}

}

Traversal Order

 Given expression

A – B * C + D

 Child node: operand

 Parent node: corresponding operator

 Inorder traversal: infix expression

A – B * C + D

 Preorder traversal: prefix expression

+ - A * B C D

 Postorder traversal: postfix or RPN expression

A B C * - D +

COMP2012H (Binary tree) 8

-

*

+

B

D

C

A

Preorder, Inorder and Postorder Traversals

COMP2012H (Binary tree) 9

A Faster Way for Tree Traversal

 You may eye-ball the solution without using recursion.

 First emanating from each node a “hook.” Trace from left to

right an outer envelop of the tree starting from the root.

Whenever you touch a hook, you print out the node.

 Preorder:

 put the hook to the left of the node

 Inorder:

 put the hook vertically down at the node

 Postorder:

 put the hook to the right of the node

COMP2012H (Binary tree) 10

Another Example (This is a Search Tree)

 Inorder (Left, Visit, Right): 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

 Preorder (Visit, Left, Right): 15, 6, 3, 2, 4, 7, 13, 9, 18,17, 20

 Postorder (Left, Right, Visit): 2, 4, 3, 9, 13, 7, 6, 17, 20,18, 15

COMP2012H (Binary tree) 11

Output Fully Parenthesized Infix Form

COMP2012H (Binary tree) 12

template <class T>

void Infix(BinaryTreeNode<T> *t)

{// Output infix form of expression.

if (t) {

cout << ’(’;

Infix(t->LeftChild); // left operand

cout << t->data; // operator

Infix(t->RightChild); // right operand

cout << ’)’;

}

}

+

/ \ returns ((a)+(b))

a b

Infix to Prefix (Pre-order Expressions)

 Infix = In-order expression

1. Infix to postfix

2. postfix to build an expression tree

1. Push operands into a stack

2. If an operator is encountered, create a binary node with the operator

as the root, push once as right child, push the 2nd time as left child, and

push the complete tree into the stack

3. With the expression tree, traverse in preorder manner

 Parent-left-right

COMP2012H (Binary tree) 13

Binary Search Tree

Search on a Sorted Sequence

COMP2012H (Binary tree) 15

4 7 10 15 19 20 42 54 87 90

Linear Search: Vector Based

COMP2012H (Binary tree) 16

template <typename t>

void LinearSearch (const vector<t> &v, const t &item,

boolean &found, int &loc)

{

found = false; loc = 0;

for (; ;)

{

if (found || loc == v.size())

return;

if (item == v[loc])

found = true;

else

loc++;

}

}

Binary Search: Vector Based

COMP2012H (Binary tree) 17

template <typename t>

void LinearSearch (const vector<t> &v, const t &item,

boolean &found, int &loc)

{

found = false;

int first = 0;

last = v.size() - 1;

for (; ;)

{

if (found || first > last) return;

loc = (first + last) / 2;

if (item < v[loc])

last = loc - 1;

else if (item > v[loc])

first = loc + 1;

else

/* item == v[loc] */

found = true;

}

}

May be replaced

by recursive codes

with additional

function parameters

first and last

Binary Search

COMP2012H (Binary tree) 18

Dictionary

 A dictionary is a collection of elements

 Each element has a field called key

 No two elements have the same key value

COMP2012H (Binary tree) 19

AbstractDataType Dictionary {

instances

collection of elements with distinct keys

Operations

Create (): create an empty dictionary

Search (k,x): return element with key k in x;

return false if the operation

fails, true if it succeeds

Insert (x): insert x into the dictionary

Delete (k,x): delete element with key k and

return it in x

}

Binary Search Tree (BST)

 Collection of data elements in a binary tree structure

 Stores keys in the nodes of the binary tree in a way so that

searching, insertion and deletion can be done efficiently

 Every element has a key (or value) and no two elements have

the same key (all keys are distinct)

 The keys (if any) in the left subtree of the root are smaller than

the key in the root

 The keys (if any) in the right subtree of the root are larger than

the key in the root

 The left and right subtrees of the root are also binary search

trees

COMP2012H (Binary tree) 20

Binary Search Tree

COMP2012H (Binary tree) 21

for any node y in this subtree

key(y) < key(x)

x

for any node z in this subtree

key(z) > key(x)

Examples of BST

 For each node x,

values in left subtree ≤ value in x ≤ value in right subtree

 a) is NOT a search tree, b) and c) are search trees

COMP2012H (Binary tree) 22

15

10

20

42

25

22

(a)

5

30

2

40

60

70

8065

(b) (c)

Binary Search Tree Property

 Two binary search trees representing the same set

COMP2012H (Binary tree) 23

3

4

5

2

7

8

2

3

7

5

4

8

Sorting: Inorder Traversal for a Search Tree

 Print out the keys in sorted order

 A simple strategy is to

1. print out all keys in left subtree in sorted order;

2. print 15;

3. print out all keys in right subtree in sorted order;

COMP2012H (Binary tree) 24

Indexed Binary Search Tree

 Derived from binary search tree by adding another field LeftSize to each
tree node

 LeftSize gives the number of elements in the node’s left subtree plus one

 An example (the number inside a node is the element key, while that outside
is the value of LeftSize)

 It is the rank of the node for the search tree rooted at that node (rank is the
position in the sorted order)

 Can be used to figure out the rank of the node in the tree

COMP2012H (Binary tree) 25

15

18

20

12

25

30

4

2

1 1 1

1 5

30

2

45

3

2

1

1

Tree Search

 If we are searching for 15, then we are done

 If we are searching for a key < 15, then we should search for it

in the left subtree

 If we are searching for a key > 15, then we should search for it

in the right subtree

COMP2012H (Binary tree) 26

root
15

<15 >15

An Example

Search for 9:

1. compare 9:15(the root), go to left

subtree;

2. compare 9:6, go to right subtree;

3. compare 9:7, go to right subtree;

4. compare 9:13, go to left subtree;

5. compare 9:9, found it!

COMP2012H (Binary tree) 27

6

7

15

3

18

20

42

17

13

149

<

>

>

<

Searching in BST

Assumption: All keys are distinct

COMP2012H (Binary tree) 28

Building a BST from a sorted array

29COMP2012H (Binary tree)

COMP2012H (Binary tree) 30

Find Min and Max

15

6 18

3 8 30

26

Minimum element

is always the

left-most node.

Maximum element

is always the

right-most node.

Time Complexity

Worse case?

Height of tree,

which can be the

total number of

nodes if tree is

not balanced!

5

COMP2012H (Binary tree) 31

Successor

The successor of a node x is

defined as:

 The node y, whose key(y) is the successor of key(x) in

sorted order

sorted order of this tree. (2,3,4,6,7,9,13,15,17,18,20)

Successor of 2
Successor of 6

Successor of 13

Some examples:

Which node is the successor of 2?

Which node is the successor of 9?

Which node is the successor of 13?

Which node is the successor of 20? Null

Successor of 9

COMP2012H (Binary tree) 32

Finding Successor:
Three Scenarios to Determine Successor

Successor(x)

x has right

descendants

=> minimum(right(x))

x has no right

descendants

x is the left child of

some node

=> parent(x)

x is the right

child of some

node

Scenario I

Scenario II Scenario III

COMP2012H (Binary tree) 33

Scenario I: Node x Has a Right Subtree

By definition of BST, all items greater than

x are in this right sub-tree.

Successor is the minimum(right(x))

maybe null

COMP2012H (Binary tree) 34

Scenario II: Node x Has No Right Subtree

and x is the Left Child of Parent (x)

Successor is parent(x)

Why? The successor is the node whose

key would appear in the next sorted order.

Think about traversal in-order. Who would

be the successor of x?

The parent of x!

COMP2012H (Binary tree) 35

Scenario III: Node x Has No Right Subtree and Is Not a

Left-Child of an Immediate Parent

Keep moving up the tree until

you find a parent which branches

from the left().Successor of x

Stated in Pseudo code.

y

x

COMP2012H (Binary tree) 36

Successor Pseudo-Codes

Scenario I

Scenario III

Verify this code

with this tree.

Find successor of

3 4

9 13

13 15

18 20

Scenario II

Note that parent(root) = NULL

COMP2012H (Binary tree) 37

Problem

 If we use a “doubly linked” tree, finding parent is easy.

 But usually, we implement the tree using only pointers to the left and right

node. So, finding the parent is tricky.

For this implementation we need to use a Stack.

class Node

{

int data;

Node *left;

Node *right;

Node *parent;

};

class Node

{

int data;

Node *left;

Node *right;

};

COMP2012H (Binary tree) 38

Use a Stack to Find Successor

PART I

Initialize an empty Stack s.

Start at the root node, and traverse the

tree until we find the node x. Push all

visited nodes onto the stack.

PART II

Once node x is found, find successor

using 3 scenarios mentioned before.

Parent nodes are found by popping

the stack!

COMP2012H (Binary tree) 39

An Example

15

6

7

Stack s

Successor(root, 13)

Part I

Traverse tree from root to find 13

order -> 15, 6, 7, 13

push(15)

push(6)

push(7)

13 found (x = node 13)

COMP2012H (Binary tree) 40

Example

15

6

7

Stack s

Successor(root, 13)

Part II

Find Parent (Scenario III)

y=s.pop()

while y!=NULL and x=right(y)

x = y;

if s.isempty()

y=NULL

else

y=s.pop()

loop

return y

y =pop()=15

->Stop right(15) != x

return y as successor!

x = 13

y =pop()=7

y =pop()=6

A Leaner Approach for Case III
 Observe that:

 x must be in the left branch of its successor y, because it is smaller in value

 To get to x from left(y), we always traverse right, i.e., the value is increasing beyond left(y).
The value never exceeds y, as x is on the left of y.

 If we plot the values from y to x against the nodes visited, it is hence of a “V” shape, starting
from y, dropping to some low value, and then increasing gradually to x, a value below y

 Using stack storing the path from the root to x, we hence can detect the right turn
in the reverse path simply as follows:

 Keep popping the stack until the key is higher than the value x. This must be its successor.

while (!s.empty()){

y = s.pop();

if(y > x)

return y; // the successor

}

return NULL; // empty stack; successor not found

COMP2012H (Binary tree) 41

Insertion

 Insert a new key into the binary

search tree

 The new key is always inserted as

a new leaf

 Example: Insert 13 ...

COMP2012H (Binary tree) 42

5

9

12

2

18

1915

13

<

>

<

17

Insertion: Another Example

 First add 80 into an existing tree

 Then add 35 into it

COMP2012H (Binary tree) 43

2

5

30

40

80 2

5

30

35

40

80

Insert into a BST

44

The insertion time is O(height

of the BST)

COMP2012H (Binary tree)

Inserting into a BST (1/2)

COMP2012H (Binary tree) 45

template<class E, class K>

BSTree<E,K>& BSTree<E,K>::Insert(const E& e)

{

// Insert e if not duplicate.

BinaryTreeNode<E> *p = this->root, // search pointer

*pp = 0; // parent of p

// find place to insert

while (p) {

// examine p->data

pp = p;

// move p to a child

if (e < p->data) p = p->LeftChild;

else if (e > p->data) p = p->RightChild;

else throw BadInput(); // duplicate

}

May be replaced

by recursive codes

with an additional

function parameter

of binary tree node

pointer

Inserting into a BST (2/2)

COMP2012H (Binary tree) 46

// get a node for e and attach to pp

BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);

if (root) {

// tree not empty

if (e < pp->data) pp->LeftChild = r;

else pp->RightChild = r;

}

else // insertion into empty tree

root = r;

return *this;

}

COMP2012H (Binary tree) 47

BST Deletion: Delete Node z from Tree

Three cases for deletion

Case I Case II

Node z is a leaf

Set z parent’s pointer

to z to NULL

Node z has exactly 1 (left or right) child

Modify appropriate parent(z) to

point to z’s child (Parent adoption)

Case III: Node z Has 2 Children

COMP2012H (Binary tree) 48

Step 1.

Find successor y of ‘z’ (i.e. y = successor(z))

Since z has 2 children, successor is y=minimum(right(z))

Successor y of z will have

no children or only a right-child.

Why? Look at the definition of

minimum(..)

Step 2.

Swap keys of z and y.

Now delete node y (which now has value z)!

This deletion is either case I or II.

y y

z zDelete

this node.

Case I Case II

(deletion of node “z” is

always going to be Case I or II)

Special Case:

Deleting the Root with 1 Child Descendant

 Move the root to the child

COMP2012H (Binary tree) 49

A Deletion Example

Three possible cases to delete a node x from a BST

1. The node x is a leaf

COMP2012H (Binary tree) 50

A

F

E

G

H

J

O

I M P

K N

L

C

B D x

free storage

A Deletion Example (Cont.)

2. The node x has one child

COMP2012H (Binary tree) 51

A

F

E

G

H

J

O

I M P

K N

L

C

B D

x

free storage

A Deletion Example (Cont.)

3. x has two children

COMP2012H (Binary tree) 52

i) Replace contents of x with

inorder successor (smallest

value in the right subtree)

ii) Delete node pointed to by xSucc

as described for cases 1 and 2

A

F

E

G

H

J

O

I M P

K N

L

C

B D

x

xSucc

free storage

A

F

E

G

H

K

O

I M P

K N

L

C

B D

x

xSucc

Another Deletion Example

 Removing 40 from (a) results in (b) using the smallest element in

the right subtree (i.e., the successor)

COMP2012H (Binary tree) 53

5

30

2

40

8035

32

3331

8560

5

30

2

60

8035

32

3331

85

(a) (b)

Another Deletion Example (Cont.)

 Removing 40 from (a) results in (c) using the largest element in

the left subtree (i.e., the predecessor)

COMP2012H (Binary tree) 54

5

30

2

40

8035

32

3331

8560

(a) (c)

5

30

2

35

8032

3331 8560

Another Deletion Example (Cont.)

 Removing 30 from (c), we may replace the element with either 5

(predecessor) or 31 (successor). If we choose 5, then (d) results.

COMP2012H (Binary tree) 55

(c)

5

30

2

35

8032

3331 8560

(d)

2

5

35

8032

3331 8560

Deletion Code (1/4)

 First Element Search, and then Convert Case III, if any, to Case I

or II

COMP2012H (Binary tree) 56

template<class E, class K>

BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e)

{

// Delete element with key k and put it in e.

// set p to point to node with key k (to be deleted)

BinaryTreeNode<E> *p = root, // search pointer

*pp = 0; // parent of p

while (p && p->data != k){

// move to a child of p

pp = p;

if (k < p->data) p = p->LeftChild;

else p = p->RightChild;

}

Deletion Code (2/4)

COMP2012H (Binary tree) 57

if (!p) throw BadInput(); // no element with key k

e = p->data; // save element to delete

// restructure tree

// handle case when p has two children

if (p->LeftChild && p->RightChild) {

// two children convert to zero or one child case

// find predecessor, i.e., the largest element in

// left subtree of p

BinaryTreeNode<E> *s = p->LeftChild,

*ps = p; // parent of s

while (s->RightChild) {

// move to larger element

ps = s;

s = s->RightChild;

}

Deletion Code (3/4)

COMP2012H (Binary tree) 58

// move from s to p

p->data = s->data;

p = s; // move/reposition pointers for deletion

pp = ps;

}

// p now has at most one child

// save child pointer to c for adoption

BinaryTreeNode<E> *c;

if (p->LeftChild) c = p->LeftChild;

else c = p->RightChild; // may be NULL

// deleting p

if (p == root) root = c; // a special case: delete root

else {

// is p left or right child of pp?

if (p == pp->LeftChild) pp->LeftChild = c;//adoption

else pp->RightChild = c;

}

Deletion Code (4/4)

COMP2012H (Binary tree) 59

delete p;

return *this;

}

Implementation: ADT of Binary Search Tree (BST)

 Construct an empty BST

 Determine if BST is empty

 Search BST for given item

 Insert a new item in the BST

 Need to maintain the BST property

 Delete an item from the BST

 Need to maintain the BST property

 Traverse the BST

 Visit each node exactly once

 The inorder traversal visits the nodes in ascending order

COMP2012H (Binary tree) 60

ADT of a BST

COMP2012H (Binary tree) 61

AbstractDataType BSTree {

instances

binary trees, each node has an element with a

key field; all keys are distinct; keys in the left

subtree of any node are smaller than the key in

the node; those in the right subtree are larger.

operations

Create(): create an empty binary search tree

Search(k, e): return in e the element/record with key k

return false if the operation fails,

return true if it succeeds

Insert(e): insert element e into the search tree

Delete(k, e): delete the element with key k and

return it in e

Ascend(): output all elements in ascending order of

key

}

A Simple Implementation without Inheritance

 tree_codes (BST.h and treetester.cpp)

62

template <typename DataType>

class BST

{

public:

// … member functions supporting BST operations

private:

/***** Binary node class *****/

class BinNode

{

public:

DataType data;

BinNode * left;

BinNode * right;

// … BinNode constructors

};// end of class BinNode declaration

typedef BinNode *BinNodePointer;

// … Auxiliary/Utility functions supporting member functions

/***** Data Members *****/

BinNodePointer myRoot; // the root of the binary search tree

}; // end of class template declarationCOMP2012H (Binary tree)

Another Implementation with Inheritance, function

pointers, and exception handling

 tree2_codes

 Binary search tree is derived from binary tree

 E is the record, and K is the key

 bst.h:

COMP2012H (Binary tree) 63

template<class E, class K>

class BSTree : public BinaryTree<E> {

public:

bool Search(const K& k, E& e) const;

BSTree<E,K>& Insert(const E& e);

BSTree<E,K>& InsertVisit

(const E& e, void(*visit)(E& u));

BSTree<E,K>& Delete(const K& k, E& e);

void Ascend() {InOutput();}

};

Skeleton of tree2_codes

 btnode.h: the node structure to be used in a binary tree

 binary.h: binary tree

COMP2012H (Binary tree) 64

template<class T>

class BinaryTree {

//… some friend functions

public:

//… member functions and note the use of

// function pointers

private:

BinaryTreeNode<T> *root; // pointer to root

//helper/utility functions and static functions

};

template <class T>

class BinaryTreeNode {

//… friend functions

public:

// … constructors

private:

T data; // data is a record

BinaryTreeNode<T> *LeftChild, // left subtree

*RightChild; // right subtree

};

Code Implementation (tree2_codes)

 bst.h

 datatype.h: DataType is to be used in the binary node with field data

65

#ifndef DataType_

#define DataType_

class DataType {

friend ostream& operator<<(ostream&, DataType);

public:

operator int() const {return key;} // implicit cast to obtain key

int key; // element key, maybe hashed from ID

char ID; // element identifier

};

ostream& operator<<(ostream& out, DataType x)

{out << x.key << ' ' << x.ID << ' '; return out;}

#endif

template<class E, class K>

bool BSTree<E,K>::Search(const K& k, E &e) const

{// Search for element that matches k.

// pointer p starts at the root and moves through

// the tree looking for an element with key k

BinaryTreeNode<E> *p = this->root;

while (p) // examine p->data

if (k < p->data) p = p->LeftChild; //implicit cast

else if (k > p->data) p = p->RightChild;

else {// found element

e = p->data; // copy the record to e

return true;}

return false;

}

May be replaced

by recursive codes

COMP2012H (Binary tree)

COMP2012H (Binary tree) 66

Time Complexity of Binary Search Trees

 Find(x) O(height of tree)

 Min(x) O(height of tree)

 Max(x) O(height of tree)

 Insert(x) O(height of tree)

 Delete(x) O(height of tree)

 Traverse O(N)

COMP2012H (Binary tree) 67

Binary Search Trees

 Problem

 How can we predict the height of the tree?

 Many trees of different shapes can be composed of the same

data

 How to control the tree shape?

Problem of Lopsidedness

 Trees can be unbalanced

 Not all nodes have exactly 2 child nodes

COMP2012H (Binary tree) 68

C

O

M P

E U

T

Problem of Lopsidedness

COMP2012H (Binary tree) 69

Processing time affected

by "shape" of tree

COMP2012H (Binary tree) 70

Binary Search Tree

4

2 6

1 3 5 7

4

2

6

1 3

5

7

Tree 1

Same data as Tree 2
Tree 2

Same data as Tree 1

Which tree would you prefer to use?

(we say this tree is “balanced”)

(this tree is “unbalanced”)

COMP2012H (Binary tree) 71

Tree Examples

(Tree resulting from randomly generated input)

COMP2012H (Binary tree) 72

Tree Examples

(Unbalanced tree)

How Fast is Sorting Using BST?

 n numbers (n large) are to be sorted by first constructing a binary tree and
then read them in inorder manner

 Bad case: the input is more or less sorted

 A rather “linear” tree is constructed

 Total steps in constructing a binary tree: 1 + 2 + … + n = n(n+1)/2 ~ n2

 Total steps in traversing the tree: n

 Total ~ n2

 Best case: the binary tree is constructed in a balanced manner
 Depth after adding i numbers: log(i)

 Total steps in constructing a binary tree: log1 + log2 + log3 + log4 + … + log n <
log n + log n + … + log n = n log n

 Total steps in traversing the tree: n

 Total ~ n log n , much faster

 It turns out that one cannot sort n numbers faster than nlog n

 For any arbitrary input, one can indeed construct a rather balanced binary
tree with some extra steps in insertion and deletion

 E.g., An AVL tree (two Soviet inventors, G. M. Adelson-Velskii and E. M. Landis, 1962)

COMP2012H (Binary tree) 73

COMP2012H (Binary tree) 74

An AVL Tree A Rather Balanced Tree for

Efficient BST Operations (See Animation)

(Balanced Tree . . This is actually a very good tree called AVL tree)

AVL Trees

(Balanced Trees)

The name comes from the inventors:

Adelson-Velskii and Landis Trees

COMP2012H (Binary tree) 76

AVL Tree Performance

 The height with n nodes is O(log n)

 For every value of n, there exists an AVL tree

 An n-element AVL search can be done in O(log n) time

 Insertion takes O(log n) time

 Deletion takes O(log n) time

COMP2012H (Binary tree) 77

Idea of AVL

 Make the binary tree a balanced tree

 What affects the tree’s shape?

 Insertion()

 Deletion()

 So, let’s modify the way we do insertions and deletions

 We need some definitions first . .

Height of a node

78

The height of a node in a tree is the number of edges on the longest

downward path from the node to a leaf

Node height = max(left child height, right child height) +1

Leaves: height = 0

Tree height = root height

Empty tree: height = −1

COMP2012H (Binary tree)

COMP2012H (Binary tree) 79

An Alternative Definition on the Height of a Node

 Height of a leaf is 1

 Height of a null pointer is 0

 The height of an internal node is the maximum height of its

children plus 1

 Slightly different than our previous definition of height, which

counted the number of edges

COMP2012H (Binary tree) 80

Height of Node example

z

x

y

1

0

X’s right tree height 3X’s left tree height 2

y’s left tree height 1

y’s left tree height 0

z’s right tree height 2z’s left tree height 1

What is the height of x? Maximum child height + 1, so height(x) = 4.

Balanced Binary Search Tree: AVL Tree

81COMP2012H (Binary tree)

Height of an AVL-tree

82COMP2012H (Binary tree)

Height of an AVL-tree

83COMP2012H (Binary tree)

COMP2012H (Binary tree) 84

How does the AVL tree work?

 After insertion and deletion we will examine the tree structure

and see if any nodes violates the AVL tree property

 If the AVL property is violated, it means the heights of left(x)

and right(x) differ by exactly 2

 If it does violate the property we can modify the tree structure

using “rotations” to restore the AVL tree property

Restoring balance after an insertion

85COMP2012H (Binary tree)

COMP2012H (Binary tree) 86

Rotations

 Two types of rotations

 Single rotations at the imbalance point

 two nodes are “rotated”

 Double rotations at the imbalance point

 three nodes are “rotated”

 We’ll see them first and see when to use them later

The Left-left Single Rotation (Case 1):

Height(left(left(x))) = h+1

COMP2012H (Binary tree) 87

Rotate x with the left child of y
(pay attention to the resulting sub-trees positions)

First imbalance point from the leave:

left(x) – right(x) = 2

h+2

x’s new height

= h+1

(Note that the height of B can be h+1, in which case x’s new height would be h+2)

COMP2012H (Binary tree) 88

Single Rotation - Example

Tree is an AVL tree by definition.

h

h+1

COMP2012H (Binary tree) 89

Add a node 02

h

h+2

Node 02 added

Tree violates the AVL definition!

Perform rotation.

First imbalance point from the leave

COMP2012H (Binary tree) 90

Example

Tree has this form.

h

h
h+1

A

B

C

x

y

COMP2012H (Binary tree) 91

Example – After Rotation

Tree has this form.

A

B C

x

y

COMP2012H (Binary tree) 92

Right-Right Single Rotation (Case 2):

Height(right(right(x))) = h+1

Rotate x with the right child of y
(pay attention to the resulting sub-trees positions)

AVL property is first violated at x from the leave:

left(x) – right(x) = -2

h+2

x’s new height

= h+1

(Note that the height of B can be h+1, in which case x’s new height would be h+2)

COMP2012H (Binary tree) 93

Single Rotation

 Sometimes a single rotation fails to solve the problem

k2

k1

X

Y

Z

k1

X

Y

Z

k2
h+2

h

h

h+2

• In such cases, we need to use a double-rotation

h+1
h+1

COMP2012H (Binary tree) 94

Right-Left Double Rotations (Case 3):

Height(right(left(x))) = h+1

Double-rotate x with its left child y and y’s right child z
(pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z:

1. Single rotate z upwards with y, pushing y down

2. Single rotate z upwards again with x, pushing x down in another

branch

First imbalance point

x’s new height

= h+1

y’s new height

= h+1

z’s new height

= h+2

COMP2012H (Binary tree) 95

Double Rotations: Case 4

Height(left(right(x))) = h+1

Double-rotate x with its right child y and y’s left child z

(pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z (similar as before):

Single rotate z upwards with y, pushing y down

Single rotate z upwards again with x, pushing x down in another branch

First imbalance point

x’s new height

= h+1

y’s new height

= h+1

z’s new height

= h+2

COMP2012H (Binary tree) 96

Double Rotation - Example

Tree is an AVL tree by definition.

h

h+1

Delete node 94

COMP2012H (Binary tree) 97

Example

AVL tree property is violated.

h
h+2

COMP2012H (Binary tree) 98

Example

Tree has this form.

B1 B2

C

A

x

y

z

COMP2012H (Binary tree) 99

After Double Rotation

A B1 B2 C

xy

z

Tree has this form

Insertion
Part 1. Perform normal BST insertion

Part 2. Check and correct AVL properties

Trace back on the path from the inserted leaf all the way towards the
root:

 Check to see if heights of left(x) and right(x) differ at most by 1
 If not, we know x is the imbalance point (the height of x is h+3)

 If left(x) is higher (h+2), then
 If left(left(x)) is of height h+1, we single rotate with x’s left child,

i.e., left(x) (case 1)

 Otherwise [right(left(x)) is higher (h+1)] we double rotate with
x’s left child, i.e., left(x) (case 3)

 Otherwise, height of right(x) is longer (h+2)
 If right(right(x)) is of height h+1, then we rotate with x’s right

child, i.e., right(x) (case 2)

 Otherwise [left(right(x)) is higher (h+1)] we double rotate with
x’s right child, i.e., right(x) (case 4)

* Rotations may stop somewhere leading to the root. Remember to make the
rotated node the new child of parent(x)

COMP2012H (Binary tree) 100

COMP2012H (Binary tree) 101

Insertion

 The time complexity to perform a rotation is O(1)

 The time complexity to find a node that violates the

AVL property is dependent on the height of the tree

(which is log(N))

 The height of a node can be found in O(N) time.

 The height of a node can also be more efficiently

stored in a node, and dynamically updated locally

each time insertion or deletion occurs. In this way, the

height can be accessed in O(1) time.

 In this case, the insertion takes O(log n) time

COMP2012H (Binary tree) 102

Deletion

 Perform normal BST deletion

 Perform exactly the same checking as for insertion to restore the

tree property

COMP2012H (Binary tree) 103

Note

 There are other variations in the way AVL trees are
implemented. These notes present a nice way that treats
insertion and deletion the same.

 All implementations have the same idea, detect an
“imbalance” in height for a node and perform corrections
via single or double rotations.

 Red-black tree (more complicated, but more efficient in
terms of space; see textbook)

COMP2012H (Binary tree) 104

Summary AVL Trees

 Maintains a balanced tree

 Modifies the insertion and deletion routine

 Performs single or double rotations to restore structure

 Requires a little more work for insertion and deletion

 But, since trees are mostly used for searching

 More work for insert and delete is worth the performance gain for
searching

 Guarantees that the height of the tree is O(logn)

 The guarantee directly implies that functions find(), min(), and
max() will be performed in O(logn)

