H.O.#12 Fall 2015 Gary Chan

Binary Tree

(N:12)

Outline

- Binary tree terminology
- Tree traversals: preorder, inorder and postorder
- Dictionary and binary search tree
- Binary search tree operations
 - Search
 - min and max
 - Successor
 - Insertion
 - Deletion
- AVL tree for tree balancing

Binary Tree Terminology

• Go to the supplementary notes

Linked Representation of Binary Trees

- The degree of a node is the number of children it has. The degree of a tree is the maximum of its element degree.
 - In a binary tree, the tree degree is two
- Each node has two links
 - one to the left child of the node
 - one to the right child of the node
 - if no child node exists for a node, the link is set to NULL

data left right Left child Right child Binary Trees as Recursive Data Structures

- Consists of a node called the root
- Root points to two disjoint binary (sub)trees
 left and right (sub)tree

Inductive step

3 Types of Tree Traversal

If the pointer to the node is not NULL:

- Preorder: Node, Left subtree, Right subtree
- Inorder: Left subtree, Node, Right subtree
- Postorder: Left subtree, Right subtree, Node

```
template<class T>
void BinaryTree<T>::PreOrder(
            void(*Visit)(BinaryTreeNode<T> *u),
                BinaryTreeNode<T> *t)
{// Preorder traversal.
    if (t) {Visit(t);
            PreOrder(Visit, t->LeftChild);
                PreOrder(Visit, t->RightChild);
                }
}
```

Inductive/Recursive step

```
template <class T>
void BinaryTree<T>::InOrder(
           void(*Visit)(BinaryTreeNode<T> *u),
                        BinaryTreeNode<T> *t)
{// Inorder traversal.
   if (t) {InOrder(Visit, t->LeftChild);
           Visit(t);
           InOrder(Visit, t->RightChild);
template <class T>
void BinaryTree<T>::PostOrder(
           void(*Visit)(BinaryTreeNode<T> *u),
                        BinaryTreeNode<T> *t)
{// Postorder traversal.
   if (t) {PostOrder(Visit, t->LeftChild);
           PostOrder(Visit, t->RightChild);
           Visit(t):
```

Traversal Order

Given expression

A - B * C + D

- Child node: operand
- Parent node: corresponding operator
- Inorder traversal: infix expression

A - B * C + D

Preorder traversal: prefix expression

+ - A * B C D

Postorder traversal: postfix or RPN expression

A B C * - D +

Preorder, Inorder and Postorder Traversals

A Faster Way for Tree Traversal

- You may eye-ball the solution without using recursion.
- First emanating from each node a "hook." Trace from left to right an outer envelop of the tree starting from the root. Whenever you touch a hook, you print out the node.

Preorder:

- put the hook to the left of the node
- Inorder:
 - put the hook vertically down at the node

Postorder:

> put the hook to the right of the node

Another Example (This is a Search Tree)

- Inorder (Left, Visit, Right): 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20
- Preorder (Visit, Left, Right): 15, 6, 3, 2, 4, 7, 13, 9, 18, 17, 20
- Postorder (Left, Right, Visit): 2, 4, 3, 9, 13, 7, 6, 17, 20, 18, 15

Output Fully Parenthesized Infix Form

```
template <class T>
void Infix(BinaryTreeNode<T> *t)
{// Output infix form of expression.
  if (t) {
    cout << ' (';
    Infix(t->LeftChild); // left operand
    cout << t->data; // operator
    Infix(t->RightChild); // right operand
    cout << ')';
 }
 +
/ \ returns ((a)+(b))
а
 b
```

Infix to Prefix (Pre-order Expressions)

- Infix = In-order expression
- 1. Infix to postfix
- 2. postfix to build an expression tree
 - 1. Push operands into a stack
 - 2. If an operator is encountered, create a binary node with the operator as the root, push once as right child, push the 2nd time as left child, and push the complete tree into the stack
- 3. With the expression tree, traverse in preorder manner
 - Parent-left-right

Binary Search Tree

Search on a Sorted Sequence

Collection of ordered data items to be searched is organized in a list

 \mathbf{x}_1 , \mathbf{x}_2 , ... \mathbf{x}_n

- Assume == and < operators defined for the type</p>
- Input: An array A of elements in sorted order, and an element x.
- Output: Find x if it exists; otherwise output "no".

4	7	10	15	19	20	42	54	87	90

- Linear search begins with the first item
 - continue through the list until target found
 - or reach end of list

```
Linear Search: Vector Based
template <typename t>
```

}

Binary Search: Vector Based

```
template <typename t>
void LinearSearch (const vector<t> &v, const t &item,
                     boolean & found, int & loc)
{
        found = false;
        int first = 0;
        last = v.size() - 1;
        for ( ; ; )
        {
                 if (found || first > last) return;
                 loc = (first + last) / 2;
                                                             May be replaced
                 if (item < v[loc])</pre>
                                                             by recursive codes
                         last = loc - 1;
                                                            with additional
                 else if (item > v[loc])
                                                            function parameters
                         first = loc + 1;
                                                            first and last
                 else
                         /* item == v[loc] */
                         found = true;
        }
```

}

Binary Search

- Running time: $O(\log n)$
- Outperforms a linear search (infinitely faster asymptotically)
- Q: How to insert/delete an element x?

A: Have to shift all elements after x, which requires O(n) time.

- A: Or, we can use a linked list instead of an array
 - Insertion/deletion takes O(1) time.
 - But, how to do a binary search on a list?

Dictionary

- A dictionary is a collection of elements
- Each element has a field called key
- No two elements have the same key value

```
AbstractDataType Dictionary {

instances

collection of elements with distinct keys

Operations

Create (): create an empty dictionary

Search (k,x): return element with key k in x;

return false if the operation

fails, true if it succeeds

Insert (x): insert x into the dictionary

Delete (k,x): delete element with key k and

return it in x
```

Binary Search Tree (BST)

- Collection of data elements in a binary tree structure
- Stores keys in the nodes of the binary tree in a way so that searching, insertion and deletion can be done efficiently
- Every element has a key (or value) and no two elements have the same key (all keys are distinct)
- The keys (if any) in the left subtree of the root are smaller than the key in the root
- The keys (if any) in the right subtree of the root are larger than the key in the root
- The left and right subtrees of the root are also binary search trees

Binary Search Tree

for any node y in this subtree key(y) < key(x)

for any node z in this subtree key(z) > key(x)

Examples of BST

- For each node x, values in left subtree ≤ value in x ≤ value in right subtree
- a) is NOT a search tree, b) and c) are search trees

Binary Search Tree Property

Two binary search trees representing the same set

Sorting: Inorder Traversal for a Search Tree

Print out the keys in sorted order

• A simple strategy is to

- 1. print out all keys in left subtree in sorted order;
- 2. print 15;
- 3. print out all keys in right subtree in sorted order;

Indexed Binary Search Tree

- Derived from binary search tree by adding another field LeftSize to each tree node
- LeftSize gives the number of elements in the node's left subtree plus one
- An example (the number inside a node is the element key, while that outside is the value of LeftSize)
- It is the rank of the node for the search tree rooted at that node (rank is the position in the sorted order)
 - Can be used to figure out the rank of the node in the tree

Tree Search

- If we are searching for 15, then we are done
- If we are searching for a key < 15, then we should search for it in the left subtree
- If we are searching for a key > 15, then we should search for it in the right subtree

An Example

Search for 9:

- compare 9:15(the root), go to left subtree;
- 2. compare 9:6, go to right subtree;
- 3. compare 9:7, go to right subtree;
- 4. compare 9:13, go to left subtree;
- 5. compare 9:9, found it!

Searching in BST

Note 1: We can also find the neighbors of x (the closest numbers sandwiching x) if x is not present in T.

NOTE 221 神윤 (영정 #영원 case) search time in a BST is O(height of the BST)

Building a BST from a sorted array

```
BuildBST (A, p, r):if p > r then return nilcreate a node xq \leftarrow \lfloor (p+r)/2 \rfloorx.key \leftarrow A[q]x.left \leftarrow BuildBST (A, p, q - 1)x.right \leftarrow BuildBST (A, q + 1, r)return xFirst call: root \leftarrow BuildBST (A, 1, n)
```

Running time

• T(n) = 2T(n/2) + O(1)

$$T(n) = O(n)$$

The resulting BST

- Any search on the tree is exactly the same as doing a binary search on A
- The height is $O(\log n)$

Algorithm Minimum(x)

Input: *x* is the root.

Output: the node containing the minimum key.

- 1. while $left(x) \neq NULL$
- 2. do $x := \operatorname{left}(x);$
- 3. return x;

Algorithm Maximum(x)

Input: x is the root.

Output: the node containing the maximum key.

- 1. while right(x) \neq NULL
- 2. **do** x := right(x);
- 3. return x;

COMP2012H (Binary tree)

Successor

The successor of a node **x** is

defined as:

The node y, whose key(y) is the successor of key(x) in sorted order

sorted order of this tree. (2,3,4,6,7,9,13,15,17,18,20)

Some examples:

Which node is the successor of 2? Which node is the successor of 9? Which node is the successor of 13? Which node is the successor of 20? Null

Finding Successor:

Three Scenarios to Determine Successor

Scenario I: Node x Has a Right Subtree

Scenario I

By definition of BST, all items greater than **x** are in this right sub-tree.

Successor is the minimum(right(x))

Scenario II: Node x Has No Right Subtree and x is the Left Child of Parent (x)

Successor is parent(x)

Why? The successor is the node whose key would appear in the next sorted order.

Think about traversal in-order. Who would be the successor of **x**? The parent of x!

Scenario III: Node x Has No Right Subtree and Is Not a Left-Child of an Immediate Parent

Scenario III

Keep moving up the tree until you find a parent which branches from the left().

Stated in Pseudo code. y := parent(x);while $y \neq$ NULL and x = right(y)do x := y;y := parent(y);

Successor Pseudo-Codes

Verify this code with this tree.

Find successor of $3 \rightarrow 4$ $9 \rightarrow 13$ $13 \rightarrow 15$ $18 \rightarrow 20$

Note that parent(root) = NULL

Algorithm *Successor*(*x*)

Input: x is the input node.

1. **if** right(x) \neq NULL

- 2. **then return** Minimum(right(x)); \blacktriangleleft Scenario I
- 3. **else**

7.

4. y := parent(x); Scenario II 5. while $y \neq NULL$ and x = right(y)6. do x := y; Scenario II

y := parent(y);

Scenario III

8. **return** *y*;

COMP2012H (Binary tree)
Problem

If we use a "doubly linked" tree, finding parent is easy.

class Node	
{	
	int data;
	Node *left;
	Node *right;
	Node *parent;
};	•

But usually, we implement the tree using only pointers to the left and right node. So, finding the parent is tricky.

For this implementation we need to use a Stack.

Use a Stack to Find Successor

Algorithm Successor(r, x)**Input:** *r* is the root of the tree and *x* is the node. initialize an empty stack S: 1. 2. while $key(r) \neq key(x)$ 3. do push(S, r); 4. if key(x) < key(r)then $r := \operatorname{left}(r);$ 5. else r := right(r);6. if right(x) \neq NULL 7. **then return** *Minimum*(right(*x*)); 8. 9. else 10. if S is empty then return NULL; 11. 12. else 13. $y := \operatorname{pop}(S);$ while $y \neq$ NULL and x = right(y)14. 15. do x := y; if S is empty 16. 17. then y := NULL;18. else y := pop(S);19. return y;

PART I Initialize an empty Stack s.

Start at the root node, and traverse the tree until we find the node \mathbf{x} . Push all visited nodes onto the stack.

PART II

Once node \mathbf{x} is found, find successor using 3 scenarios mentioned before.

Parent nodes are found by popping the stack!

An Example

Successor(root, 13) <u>Part I</u> Traverse tree from root to find 13 order -> 15, 6, 7, 13

Algorithm Successor(r, x)

Input: r is the root of the tree and x is the node.

1. initialize an empty stack S;

2. while
$$\ker(r) \neq \ker(x)$$

- 3. do push(S,r);
- 4. **if** key(x) < key(r)
- 5. **then** $r := \operatorname{left}(r);$
- 6. **else** r := right(r);

Stack s

Example

7.

8. 9. Successor(root, 13) Part II Find Parent (Scenario III)

```
y=s.pop()
while y!=NULL and x=right(y)
  \mathbf{x} = \mathbf{y};
  if s.isempty()
      y=NULL
  else
      y=s.pop()
  loop
                             7
return y
                             6
                             15
```


A Leaner Approach for Case III

Observe that:

- > x must be in the left branch of its successor y, because it is smaller in value
- To get to x from left(y), we always traverse right, i.e., the value is increasing beyond left(y). The value never exceeds y, as x is on the left of y.
- If we plot the values from y to x against the nodes visited, it is hence of a "V" shape, starting from y, dropping to some low value, and then increasing gradually to x, a value below y
- Using stack storing the path from the root to x, we hence can detect the right turn in the reverse path simply as follows:
 - Keep popping the stack until the key is higher than the value x. This must be its successor.

```
while (!s.empty()) {
    y = s.pop();
    if( y > x)
        return y; // the successor
}
return NULL; // empty stack; successor not found
```

Insertion

- Insert a new key into the binary search tree
- The new key is always inserted as a new leaf
- Example: Insert 13 ...

Insertion: Another Example

- First add 80 into an existing tree
- Then add 35 into it

Insert into a BST 5 2 9 12 18 19 15 19 13 1717

while $x \neq nil$ do $y \leftarrow x$ if k < x.key then $x \leftarrow x.left$ else $x \leftarrow x.right$ create a new node z $z.key \leftarrow k, z.left \leftarrow nil, z.right \leftarrow nil$ if k < y.key then $y.left \leftarrow z$ else $y.right \leftarrow z$

The insertion time is O(height of the BST)

```
Inserting into a BST (1/2)
template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Insert(const E& e)
   // Insert e if not duplicate.
   BinaryTreeNode<E> *p = this->root, // search pointer
                       *pp = 0; // parent of p
   // find place to insert
   while (p) {
                                                      May be replaced
                                                      by recursive codes
       // examine p->data
                                                      with an additional
       pp = p;
                                                      function parameter
       // move p to a child
                                                      of binary tree node
       if (e < p->data) p = p->LeftChild;
                                                      pointer
       else if (e > p->data) p = p->RightChild;
       else throw BadInput(); // duplicate
    }
```

```
Inserting into a BST (2/2)
   // get a node for e and attach to pp
   BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);
   if (root) {
      // tree not empty
       if (e < pp->data) pp->LeftChild = r;
      else pp->RightChild = r;
   }
   else // insertion into empty tree
      root = r;
   return *this;
}
```

BST Deletion: Delete Node z from Tree

Case III: Node z Has 2 Children

Step 1.

```
Find successor y of 'z' (i.e. y = successor(z))
```

Since z has 2 children, successor is y=minimum(right(z))

Now delete node y (which now has value z)! This *deletion* is either case I or II.

(deletion of node "z" is always going to be Case I or II)

COMP2012H (Binary tree)

Special Case: Deleting the Root with 1 Child Descendant

Move the root to the child

A Deletion Example

Three possible cases to delete a node x from a BST

1. The node x is a leaf

A Deletion Example (Cont.)

2. The node x has one child

A Deletion Example (Cont.)

3. x has two children

i) Replace contents of x with inorder successor (smallest value in the right subtree) ii) Delete node pointed to by xSucc as described for cases 1 and 2

Another Deletion Example

 Removing 40 from (a) results in (b) using the smallest element in the right subtree (i.e., the successor)

Another Deletion Example (Cont.)

 Removing 40 from (a) results in (c) using the largest element in the left subtree (i.e., the predecessor)

Another Deletion Example (Cont.)

Removing 30 from (c), we may replace the element with either 5 (predecessor) or 31 (successor). If we choose 5, then (d) results.

Deletion Code (1/4)

First Element Search, and then Convert Case III, if any, to Case I or II

```
template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e)
{
   // Delete element with key k and put it in e.
   // set p to point to node with key k (to be deleted)
   BinaryTreeNode<E> *p = root, // search pointer
                     *pp = 0; // parent of p
   while (p && p->data != k) {
      // move to a child of p
      pp = p;
      if (k < p->data) p = p->LeftChild;
      else p = p->RightChild;
   }
```

Deletion Code (2/4)

if (!p) throw BadInput(); // no element with key k

e = p->data; // save element to delete

```
// restructure tree
// handle case when p has two children
if (p->LeftChild && p->RightChild) {
   // two children convert to zero or one child case
   // find predecessor, i.e., the largest element in
   // left subtree of p
   BinaryTreeNode<E> *s = p->LeftChild,
   *ps = p; // parent of s
   while (s->RightChild) {
      // move to larger element
      ps = s;
      s = s->RightChild;
   }
```

```
Deletion Code (3/4)
```

```
// move from s to p
   p->data = s->data;
   p = s; // move/reposition pointers for deletion
   pp = ps;
}
// p now has at most one child
// save child pointer to c for adoption
BinaryTreeNode<E> *c;
if (p->LeftChild) c = p->LeftChild;
else c = p->RightChild; // may be NULL
// deleting p
if (p == root) root = c; // a special case: delete root
else {
   // is p left or right child of pp?
   if (p == pp->LeftChild) pp->LeftChild = c;//adoption
   else pp->RightChild = c;
```

```
}
COMP2012H (Binary tree)
```

Deletion Code (4/4)

delete p;
return *this;

}

Implementation: ADT of Binary Search Tree (BST)

- Construct an empty BST
- Determine if BST is empty
- Search BST for given item
- Insert a new item in the BST
 - Need to maintain the BST property
- Delete an item from the BST
 - Need to maintain the BST property
- Traverse the BST
 - Visit each node exactly once
 - The inorder traversal visits the nodes in ascending order

ADT of a BST

```
AbstractDataType BSTree {
instances
      binary trees, each node has an element with a
      key field; all keys are distinct; keys in the left
      subtree of any node are smaller than the key in
      the node; those in the right subtree are larger.
operations
      Create(): create an empty binary search tree
      Search(k, e): return in e the element/record with key k
                     return false if the operation fails,
                     return true if it succeeds
      Insert(e): insert element e into the search tree
      Delete(k, e): delete the element with key k and
                     return it in e
      Ascend(): output all elements in ascending order of
          key
```

}

A Simple Implementation without Inheritance

tree_codes (BST.h and treetester.cpp)

```
template <typename DataType>
class BST
public:
  // ... member functions supporting BST operations
private:
  /**** Binary node class ****/
  class BinNode
  public:
    DataType data;
   BinNode * left;
    BinNode * right;
    // ... BinNode constructors
  };// end of class BinNode declaration
  typedef BinNode *BinNodePointer;
  // ... Auxiliary/Utility functions supporting member functions
 /***** Data Members ****/
  BinNodePointer myRoot; // the root of the binary search tree
```

COMP2012H (Binary trend) of class template declaration

Another Implementation with Inheritance, function pointers, and exception handling

tree2_codes

- Binary search tree is derived from binary tree
- E is the record, and K is the key
- bst.h:

Skeleton of tree2_codes

btnode.h: the node structure to be used in a binary tree

binary.h: binary tree

```
template<class T>
class BinaryTree {
    //... some friend functions
    public:
        //... member functions and note the use of
        // function pointers
    private:
        BinaryTreeNode<T> *root; // pointer to root
        //helper/utility functions and static functions
};
```

Code Implementation (tree2_codes)

bst.h

datatype.h: DataType is to be used in the binary node with field data

```
#ifndef DataType_
#define DataType_
#define DataType_
class DataType {
   friend ostream& operator<<(ostream&, DataType);
   public:
        operator int() const {return key;} // implicit cast to obtain key
        int key; // element key, maybe hashed from ID
        char ID; // element identifier
};
COMP2012H (Binaty free)
#endif</pre>
```

Time Complexity of Binary Search Trees

- Find(x)
- Min(x)
- Max(x)
- Insert(x)
- Delete(x)
- Traverse

- O(height of tree)
- O(N)

Binary Search Trees

Problem

- How can we predict the height of the tree?
- Many trees of different shapes can be composed of the same data
- How to control the tree shape?

Problem of Lopsidedness

- Trees can be unbalanced
- Not all nodes have exactly 2 child nodes

Problem of Lopsidedness

- Trees can be totally lopsided
- If we insert all elements in sorted order... each node would have a right child only
 - Degenerates into a linked list
- Need a way to restore "balance" so that the height is always O(log n).

Same data as Tree 2

Iree 2 Same data as Tree 1

Which tree would you prefer to use?

Tree Examples

Figure 4.29 A randomly generated binary search tree

(Tree resulting from randomly generated input)

Tree Examples

How Fast is Sorting Using BST?

- n numbers (n large) are to be sorted by first constructing a binary tree and then read them in inorder manner
- Bad case: the input is more or less sorted
 - A rather "linear" tree is constructed
 - Total steps in constructing a binary tree: $1 + 2 + ... + n = n(n+1)/2 \sim n^2$
 - > Total steps in traversing the tree: n
 - Total $\sim n^2$
- Best case: the binary tree is constructed in a balanced manner
 - Depth after adding i numbers: log(i)
 - Total steps in constructing a binary tree: log1 + log2 + log3 + log4 + ... + log n < log n + log n + ... + log n = n log n</p>
 - > Total steps in traversing the tree: n
 - Total \sim n log n , much faster
- It turns out that one cannot sort n numbers faster than nlog n
- For any arbitrary input, one can indeed construct a rather balanced binary tree with some extra steps in insertion and deletion
 - E.g., An AVL tree (two Soviet inventors, G. M. Adelson-Velskii and E. M. Landis, 1962)

An AVL Tree \rightarrow A Rather Balanced Tree for Efficient BST Operations (See Animation)

AVL Trees

(Balanced Trees)

The name comes from the inventors: Adelson-Velskii and Landis Trees

AVL Tree Performance

- The height with n nodes is O(log n)
- For every value of *n*, there exists an AVL tree
- An n-element AVL search can be done in O(log n) time
- Insertion takes O(log n) time
- Deletion takes O(log n) time

- Make the binary tree a balanced tree
- What affects the tree's shape?
 - Insertion()
 - Deletion()
- So, let's modify the way we do insertions and deletions
- We need some definitions first . .

Height of a node

The height of a node in a tree is the number of edges on the longest downward path from the node to a leaf

Node height = max(left child height, right child height) + 1

Leaves: height = 0

Tree height = root height

Empty tree: height = -1

An Alternative Definition on the Height of a Node

- Height of a leaf is 1
- Height of a null pointer is 0
- The height of an internal node is the maximum height of its children plus 1
- Slightly different than our previous definition of height, which counted the number of edges

Height of Node example

What is the height of x? Maximum child height + 1, so height(x) = 4.

Balanced Binary Search Tree: AVL Tree

An AVL-tree is a binary search tree in which for every node in the tree, (right height – left height) differs by at most 1.

- Q: Why is the height of an AVLtree $O(\log n)$?
- Q: How to maintain the AVL property after an insertion/deletion?

Height of an AVL-tree

- Constant of the second state of the second
 - Let n_h be the minimum number of nodes in an AVL tree of height h.

•
$$n \ge n_h \ge 2^{ch} \Leftrightarrow h \le \frac{1}{c} \log n = O(\log n)$$

• We will prove the statement by mathematical induction

 $n_0 = 1$ $n_1 = 2$ $n_2 = n_1 + n_0 + 1 = 4$ $n_3 = n_2 + n_1 + 1 = 7$

Height of an AVL-tree

Claim: $n_h \ge 2^{h/2}$ Pf: (by induction on h) $n_0 = 1, n_1 = 2$ (base case) Recurrence: $n_h \ge n_{h-1} + n_{h-2} + 1$ $n_h = n_{h-1} + n_{h-2} + 1$ $\ge 2n_{h-2} \quad (n_{h-1} \ge n_{h-2} + 1)$ $\ge 2 \cdot 2^{(h-2)/2} \quad (\text{induction hypothesis})$ $= 2^{h/2}$

Theorem: The height of an AVL-tree of n nodes is $O(\log n)$.

How does the AVL tree work?

- After insertion and deletion we will examine the tree structure and see if any nodes violates the AVL tree property
 - If the AVL property is violated, it means the heights of left(x) and right(x) differ by exactly 2
- If it does violate the property we can modify the tree structure using "rotations" to restore the AVL tree property

Restoring balance after an insertion

- After an insertion, only nodes that are on the path from the insertion node to the root might have their balance altered
 - Because only those nodes have their subtrees altered

Idea:

- Update the heights of these nodes from the insertion node
- Stop when we find the lowest node A violating AVL tree property
- We will fix the tree at A.

Rotations

Two types of rotations

- Single rotations at the imbalance point
 - two nodes are "rotated"
- Double rotations at the imbalance point
 - three nodes are "rotated"

We'll see them first and see when to use them later

(Note that the height of B can be h+1, in which case x's new height would be h+2)

Single Rotation - Example

Tree is an AVL tree by definition.

Add a node 02

Tree violates the AVL definition! Perform rotation.

Example

Right-Right Single Rotation (Case 2): Height(right(right(x))) = h+1

AVL property is first violated at x from the leave: left(x) - right(x) = -2 $h \downarrow A$ $h \downarrow A$ $B \downarrow h C \downarrow h+1$ h+2 $h \downarrow A$ $h \downarrow A$ $h \downarrow B$ $h \downarrow C$ h+1 $h \downarrow A$ $h \downarrow B$ $h \downarrow C$ $h \downarrow h+1$ $h \downarrow A$ $h \downarrow B$ $h \downarrow B$ $h \downarrow A$ $h \downarrow B$ $h \downarrow B$ $h \downarrow B$

> Rotate **x** with the right child of **y** (pay attention to the resulting sub-trees positions)

(Note that the height of B can be h+1, in which case x's new height would be h+2)

Single Rotation

In such cases, we need to use a double-rotation

Right-Left Double Rotations (Case 3): Height(right(left(x))) = h+1

Double-rotate **x** with its left child **y** and **y's** right child **z** (pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z:

- 1. Single rotate z upwards with y, pushing y down
- 2. Single rotate z upwards again with x, pushing x down in another branch

· parent or x

 $P.left/right \leftarrow z$ $x.left \leftarrow y.right$ $y.right \leftarrow x.left$ $z.left \leftarrow y$ $z.right \leftarrow x$

Double Rotations: Case 4 Height(left(right(x))) = h+1

Double-rotate **x** with its right child **y** <u>and</u> **y**'s left child **z** (pay attention to the resulting sub-trees positions)

Involves 2 single rotations on z (similar as before): Single rotate z upwards with y, pushing y down Single rotate z upwards again with x, pushing x down in another branch

Double Rotation - Example

Tree is an AVL tree by definition.

Example

AVL tree property is violated.

Example

After Double Rotation

h

С

х

Ζ

h+1

B2

y

B1

h

A

Tree has this form

z

B2

у

B1

h

х

h

Insertion

Part 1. Perform normal BST insertion

Part 2. Check and correct AVL properties

Trace back on the path from the inserted leaf all the way towards the root:

- Check to see if heights of left(x) and right(x) differ at most by 1
- If not, we know x is the imbalance point (the height of x is h+3)
 - \Box If left(x) is higher (h+2), then
 - If left(left(x)) is of height h+1, we single rotate with x's left child, i.e., left(x) (case 1)
 - Otherwise [right(left(x)) is higher (h+1)] we double rotate with x's left child, i.e., left(x) (case 3)
 - \Box Otherwise, height of right(x) is longer (h+2)
 - □ If right(right(x)) is of height h+1, then we rotate with x's right child, i.e., right(x) (case 2)
 - Otherwise [left(right(x)) is higher (h+1)] we double rotate with x's right child, i.e., right(x) (case 4)
- * Rotations may stop somewhere leading to the root. Remember to make the rotated node the new child of parent(x)

Insertion

- The time complexity to perform a rotation is O(1)
- The time complexity to find a node that violates the AVL property is dependent on the height of the tree (which is log(N))
- The height of a node can be found in O(N) time.
- The height of a node can also be more efficiently stored in a node, and dynamically updated locally each time insertion or deletion occurs. In this way, the height can be accessed in O(1) time.
 - In this case, the insertion takes O(log n) time

Deletion

Perform normal BST deletion

 Perform exactly the same checking as for insertion to restore the tree property

Note

- There are other variations in the way AVL trees are implemented. These notes present a nice way that treats insertion and deletion the same.
- All implementations have the same idea, detect an "imbalance" in height for a node and perform corrections via single or double rotations.
- Red-black tree (more complicated, but more efficient in terms of space; see textbook)

Summary AVL Trees

- Maintains a balanced tree
- Modifies the insertion and deletion routine
 - Performs single or double rotations to restore structure
 - Requires a little more work for insertion and deletion
 - But, since trees are mostly used for searching
 - More work for insert and delete is worth the performance gain for searching
- Guarantees that the height of the tree is O(logn)
 - The guarantee directly implies that functions find(), min(), and max() will be performed in O(logn)