
Inheritance and Polymorphism

N:14; D:12,13,25

H.O. #11

Fall 2015

Gary Chan

Outline

 Inheritance and Object-Oriented Design

 Types of Inheritance

 Building Derived Classes

 Order of Construction and Destruction

 Multiple Inheritance

 Polymorphism

 Virtual Functions

 Abstract Class

COMP2012H (Inheritance & polymorphism) 2

Encapsulation

 Languages such as Pascal and C facilitated development of
structured programs

 Need for ability to extend and reuse software became evident

 This leads to object-oriented programming where objects are built on top
of other objects

 Data and basic operations for processing the data are
encapsulated into a single “entity”. This is made possible with
introduction of

 Modules

 Libraries

 Packages

 Implementation details are separated from class definition

 Client code must use only public operations

 Implementation may be changed without affecting client code

COMP2012H (Inheritance & polymorphism) 3

Encapsulation with Inheritance

 Some basic class features may be re-used in other classes

 A class can be derived from another class

 New class inherits data and function members from the original class

 Reusable for the new class

 Example: Consider the design of a new stack class which adds,

for example max() and min(), functions to a stack

 It is better to build “on top” of the proven stack by adding the functions

 The new class is inherited or derived from the stack class

 Obviously, this concept is different from creating a new class with a stack

as its member object, because a stack cannot contain a stack

COMP2012H (Inheritance & polymorphism) 4

Inheritance Features and Advantages

 Software reusability

 Often used in computer game design

 Create new class from existing class

 Seamlessly absorb existing class’s data and behaviors

 Enhance with new capabilities

 Derived class inherits from base class

 More specialized objects

 Behaviors inherited from base class

 Can customize

 Additional behaviors

COMP2012H (Inheritance & polymorphism) 5

Inheritance Example

(Some Examples with Arrows Reversed)

COMP2012H (Inheritance & polymorphism) 6

Another Inheritance Example

COMP2012H (Inheritance & polymorphism) 7

Inheritance for Stack

 Adapter approach

 Build a new revised class RevStack

 Contains Stack object as its member

 But …

 Strictly speaking or conceptually, we cannot

say anymore a RevStack is a Stack,

because it contains a Stack

 To access the functions of Stack, we need to

call: RevStk.myStack.push(); for a stack we

prefer simply RevStk.push()

COMP2012H (Inheritance & polymorphism) 8

max(), min() and other

new operations including

revised max() and min()

Stack myStack

push(), pop()…

myTop, …

new data members…

RevStack class

How about copy-and-paste?

 To modify the member functions, we may use copy-and-paste
approach

 Build a RevStack class (Revised Stack)

 Copy and paste those data members and function members in Stack

 Add the max() and min()

 Problem

 RevStack and Stack are now separate and independent classes

 If we update some common member functions in Stack, we must change
RevStack versions

COMP2012H (Inheritance & polymorphism) 9

max(), min() and other new operations

push(), pop()

myTop, …

new data members…

RevStack class

push(), pop()

myTop, …

Stack class

Inheritance

 Object-oriented approach

 Derive a new class, RevStack from Stack

 Stack is the base class or superclass

 RevStack is a derived class or subclass

 Derived class inherits all members of base class

 Modifying Stack class automatically updates Revstack class

COMP2012H (Inheritance & polymorphism) 10

max(), min() and other new operations

new data members…

RevStack class

push(), pop()

myTop, …

Stack class

Relationships Between Classes

 Inheritance

 “is-a” relationship

 Derived class object can be treated as base class object

 Example: Car is a vehicle

 Vehicle properties/behaviors also apply to a car

 Composition (class in class)

 “has-a” relationship

 Object contains one or more objects of other classes as members

 Example: A car object has a steering wheel object

COMP2012H (Inheritance & polymorphism) 11

Car

Vehicle

Class-in-Class (Object-in-Object) vs. Inheritance

 A class declares another class as its data member, hence creating an

object within another object

 Inheritance and class-in-class are two quite different things and

concepts in implementation and OOP.

 Inheritance has a "is-a" relationship between derived class and base

class, while class-in-class is a "has-a" relationship

 Generally, we can decide whether to use inheritance or class-in-class

by common sense. If we can find some common relationship between

two or more things, we should use inheritance.

 For example, Citizen and Student with Citizen as the base class. It makes no

sense to implement a Citizen class inside a Student class.

 In class-in-class, the inner class is a standalone object. Thus, the inner

class and the outer class do not share the powerful features in

inheritance (such as polymorphism and dynamic binding).

COMP2012H (Inheritance & polymorphism) 12

Relationships Between Inheritance Classes

 Base classes and derived classes

 Object of one class “is an” object of another class

 Example: Rectangle is a quadrilateral

 Class Rectangle inherits from class Quadrilateral

 Quadrilateral is the base class

 Rectangle is the derived class

 Base class typically represents larger set of objects than

derived classes

 Base class: Vehicle

 Includes cars, trucks, boats, bicycles, etc.

 Derived class: Car

 Smaller, more-specific subset of vehicles

COMP2012H (Inheritance & polymorphism) 13

Inheritance Concept

 When class C2 is derived from class C1

 Class C2 is-a C1

 A HuntingLicense is-a License

 Use public inheritance only for “is-a” relationships

 When class D1 contains a class D2 object as an element

 D1 has-a D2

 A License has-a Date

 Inheritance should not be used for has-a relationships

COMP2012H (Inheritance & polymorphism) 14

Hunting

License

License Date

“Uses-a” Relationships Between Classes

 If class D1 needs information from class D2

 Then D1 uses-a D2

 An AutoInsurance class needs the name from a DriversLicense
class

 May be implemented as class-in-class

COMP2012H (Inheritance & polymorphism) 15

Motorcycle

License

Car

License

Deer

License

Pheasant

License

Auto-Insurance

Drivers

License

Hunting

License

License

…

Class hierarchy

 Direct base class

 Inherited explicitly (one level up hierarchy)

 E.g., driver licenses and license

 Indirect base class

 Inherited two or more levels up hierarchy

 E.g., car license and license

 Single inheritance

 Inherits from one base class

 E.g., the above license example

 Multiple inheritance

 Inherits from multiple base classes

 Base classes possibly unrelated

 E.g., A “university student” is both a “hard-working person” and a “clever
person”

COMP2012H (Inheritance & polymorphism) 16

 kind is one of

 public: direct access to public region

 private: does not allow direct access of the private region

 protected: allowing protected region to be directly accessed by derived

class and not other classes

Declaration of a Derived Class

COMP2012H (Inheritance & polymorphism) 17

class DerivedClassName : kind BaseClassName

{

public:

// new data members

private: // or protected

// functions for derived class

...

};

Access Previledge of Derived Class

 Derived class inherits all members of base class

 And members of all its ancestor classes

 Always cannot access directly private members of base class

 Regarding public and protected members of the upstream class,

the kind of access a derived class has depends on kind of

inheritance

COMP2012H (Inheritance & polymorphism) 18

protected members

 In the base class, the private data members cannot be

accessed by its derived class

 In the base class, the protected data members is like private

members to other classes

 However, the derived class can access it directly as if it is a private

member

 An example of the use of protected keyword:

keyword_protected.cpp

COMP2012H (Inheritance & polymorphism) 19

Protected Access

 Intermediate level of protection between public and

private

 For both data members and function members

 Want the derived class to directly access members while forbid other

classes to access them directly

 protected members in the Base class are accessible to

 Base class members

 Base class friends

 Derived class members

 Derived class friends

 Derived-class members

 May use the public and protected members of base class

 Simply use member names as its own members

COMP2012H (Inheritance & polymorphism) 20

Types of Inheritance and Region Transformation
 public inheritance (written as class derived: public base)

 Base class public members  derived class public members

 Base class protected members  derived class protected members

 All classes can directly access the public members

 Only the derived classes can directly access the protected members

 protected inheritance (written as class derived: protected base)

 Base class public and protected members  derived class protected members

 Classes in the inheritance hierarchy can still access the members (because they are protected members),
but not for other classes

 private inheritance (written as class derived: private base)

 Base class public and protected members  derived class private members

 Classes in the downstream inheritance hierarchy can no longer access the members (and neither can all the
other classes)

COMP2012H (Inheritance & polymorphism) 21

public

protected

public

protected

public

protected

protected

protected

public

protected

private

private

Base class Derived classpublic

protected

private

Types of Inheritance and Member Access

COMP2012H (Inheritance & polymorphism) 22
class derived: public base class derived:

protected base

class derived: private base

kind.cpp: Illustration of kinds of inheritance

 Note how the protected members are accessed in different

derived classes

 Note how the public and protected members of Base class are

changed by the kind of inheritance. Their accessibility is also

changed.

COMP2012H (Inheritance & polymorphism) 23

Public Inheritance

 Specify with:

class TwoDimensionalShape : public Shape

 Class TwoDimensionalShape inherits from class Shape

 Base class private members

 Not accessible directly (still inherited)

 Manipulated through inherited public member functions

 Base class public and protected members

 Inherited with original member access

 friend functions

 Not inherited

COMP2012H (Inheritance & polymorphism) 24

Building Derived Classes (for public Inheritance)

 Derived class constructors

 Use parent class's constructors to initialize base class members

 Is actually a call to the base class constructor

 The member-initializer list initializes member objects

 Need to explicitly invoke base-class constructors in the member initializer

 Accessing inherited data members

 If base class data public, derived class can access, even alter it

 If base class protected, can also alter it directly

 If base class data private, must use accessor functions

COMP2012H (Inheritance & polymorphism) 25

Building Derived Classes: Reusing Operations

 Derived class may extend or replace base class function of the

same name

 Possible to call the base class function with scope resolution

operator

COMP2012H (Inheritance & polymorphism) 26

void DerivedClass::foo()

{ // extending the base class function

. . .

BaseClass::foo();

. . .

}

CommissionEmployee Example

 CommissionEmployee

 First name, last name, SSN (Social Security Number, i.e., ID), commission

rate, gross sale amount

 BasePlusCommissionEmployee

 CommissionEmployee: First name, last name, SSN, commission rate, gross

sale amount

 And also base salary

 Class BasePlusCommissionEmployee

 Much of the code is similar to CommissionEmployee

 Additions

 private data member baseSalary

 Methods setBaseSalary and getBaseSalary

COMP2012H (Inheritance & polymorphism) 27

CommissionEmployee Example:

Class BasePlusCommissionEmployee

 Derived from class CommissionEmployee

 Is a CommissionEmployee

 Inherits all public members

 Use base-class initializer syntax to initialize base-class data member

 Has data member baseSalary

 Base class implementation

 CommissionEmployee1.h, CommissionEmployee1.cpp

 Derived class implementation

 BasePlueCommissionEmployee1.h,
BasePlusCommissionEmployee1.cpp

 Compilation error because derived class cannot directly access
private members of CommissionEmployee class in
print() and earnings()

COMP2012H (Inheritance & polymorphism) 28

Protected Access

 Use protected keyword to fix the problem

 CommissionEmployee2.h,

CommissionEmployee2.cpp,

BasePlusCommissionEmployee2.h,

BasePlusCommissionEmployee2.cpp, test2.cpp

COMP2012H (Inheritance & polymorphism) 29

tester2.cpp Sample Output

COMP2012H (Inheritance & polymorphism) 30

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333

Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Using Protected Data Members

 Advantages

 Derived class can modify values directly

 Avoid set/get method call overhead  Slight increase in performance

 Disadvantages

 No validity checking: Derived class can assign illegal value to protected

members

 Implementation becomes dependent on the base class

 Derived class functions becomes very dependent on base class implementation

 Using protected access, base class implementation changes may result in

derived class modifications, e.g., a change of the name in the protected region

of the base class may leads to many changes in the derived class

 This leads to fragile (brittle) software

COMP2012H (Inheritance & polymorphism) 31

Best Software Engineering Practice

 Declare data members as private

 Provide public get and set functions

 Use get and set method to obtain and set values of data

members

 CommissionEmployee3.h,

CommissionEmployee3.cpp,

BasePlusCommissionEmployee3.h,

BasePlusCommissionEmployee3.cpp,

tester3.cpp

COMP2012H (Inheritance & polymorphism) 32

tester3.cpp Sample Output

COMP2012H (Inheritance & polymorphism) 33

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333

Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Remarks

 Using a member function to access a data member’s value can

be slightly slower than accessing the data directly.

 But programmers should write code that adheres to proper software

engineering principles, and leave optimization issues to the compiler

 In function over-riding, failure to use the scope :: operator

prefixed with the name of the base class when referencing the

base class’s member function causes infinite recursion (as the

derived-class member function calls itself)

 E.g., The earnings() function in the base class is overridden by

double BasePlusCommissionEmployee::earnings() const

in BasePlusCommissionEmployee3.cpp

COMP2012H (Inheritance & polymorphism) 34

Base and Derived Functions: Function Over-riding,

not Over-loading/co-existing functions

 In the derived class, having a member function with the same name as a base
class function hides (or overrides) the base-class version of the function

 It is OK to call d.print() if print were not defined at all in the
Derived class (prints out base)

COMP2012H (Inheritance & polymorphism) 35

class Base{

public:

void print(){cout << "base\n";}

};

class Derived: public Base{

public:

void print(int i){ cout << i << " Derived\n";}

void print(char ch){ cout << ch << " Derived\n";}

};

int main(){

Derived d;

d.print(2); // print 2 Derived

d.print('d'); // print d Derived

// d.print(); Not O.K.: no matching function for Derived::print()

return 0;

}

Order of Construction
 Called at the initializer list, e.g., Derived:: Derived():
Base(){…}

 The base class MUST be constructed in the initializer

 You MUST only call the immediate/direct base class constructor

 Chain of constructor calls to instantiate derived-class object:

 Derived-class constructor invokes base class constructor

 Implicitly or explicitly

 Base-class constructor: Base of inheritance hierarchy

 Like a recursive stack

 Initializing data members

 Each base-class constructor initializes its data members that are inherited by derived class

 When a program creates a derived-class object:

1. The derived-class constructor immediately calls the base-class constructor

2. The base-class constructor’s body (i.e., within {}) executes

3. Then the derived class’s member initializer list execute

4. Finally the derived-class constructor’s body executes

 This process cascades up the hierarchy if the hierarchy contains more than
two levels in a recursive manner

COMP2012H (Inheritance & polymorphism) 36

Order of Destruction

 Chain of destructor calls to destroy derived-class object:

 Reverse order of constructor chain

 Destructor of derived-class is called first

 Destructor of the next base class up hierarchy next

 Continue up hierarchy until final base reached

 After final base-class destructor, object is removed from memory

 Base-class constructors, destructors, assignment operators

 Not inherited by derived classes

 Example on order of construction and destruction

 CommissionEmployee4.h, CommissionEmployee4.cpp,

BasePlusCommissionEmployee4.h,

BasePlusCommissionEmployee4.cpp, order.cpp

COMP2012H (Inheritance & polymorphism) 37

order.cpp Sample Output (1/4)

COMP2012H (Inheritance & polymorphism) 38

CommissionEmployee constructor:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

CommissionEmployee destructor:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

CommissionEmployee constructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

CommissionEmployee constructor

called for object in block;

destructor called immediately as

execution leaves scope

Base-class CommissionEmployee

constructor executes first when

instantiating derived-class

BasePlusCommissionEmployee object

order.cpp Sample Output (2/4)

COMP2012H (Inheritance & polymorphism) 39

BasePlusCommissionEmployee constructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

base salary: 800.00

CommissionEmployee constructor:

commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

Derived-class BasePlusCommissionEmployee

constructor body executes after base-class

CommissionEmployee’s constructor finishes execution

Base-class CommissionEmployee constructor

executes first when instantiating derived-class

BasePlusCommissionEmployee object

order.cpp Sample Output (3/4)

COMP2012H (Inheritance & polymorphism) 40

BasePlusCommissionEmployee constructor:

base-salaried commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

base salary: 2000.00

BasePlusCommissionEmployee destructor:

base-salaried commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

base salary: 2000.00

CommissionEmployee destructor:

commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

Derived-class BasePlusCommissionEmployee

constructor body executes after base-class

CommissionEmployee’s constructor finishes execution

Destructors for

BasePlusCommissionEmployee object

called in reverse order of constructors

order.cpp Sample Output (4/4)

COMP2012H (Inheritance & polymorphism) 41

BasePlusCommissionEmployee destructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

base salary: 800.00

CommissionEmployee destructor:

commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

Destructors for BasePlusCommissionEmployee object

called in reverse order of constructors

Multiple Inheritence

 When a derived class inherits members from two or more base

classes

 Provide comma-separated list of base classes after the colon following the

derived class name

 Can cause ambiguity problems

 Should be used only by experienced programmers

 Newer languages do not allow multiple inheritance

 A common issue occurs if more than one base class contains a member with

the same name

 Solved by using the binary scope resolution operator

COMP2012H (Inheritance & polymorphism) 42

Multiple Inheritence (Cont.)

 Should be used when an “is a” relationship exists between a

new type and two or more existing types

 i.e. type A “is a” type B and type A “is a” type C

 Can introduce complexity into a system

 Great care is required in the design of a system to use multiple

inheritance properly

 Should not be used when single inheritance and/or composition will do the

job

 Example:

 Base1.h, Base2.h, Derived.h, Derived.cpp,

multiple.cpp

COMP2012H (Inheritance & polymorphism) 43

multiple.cpp Sample Output

 Note the use of base-class pointer pointing to a derived-class objects

 Invoking the member function of the derived object

COMP2012H (Inheritance & polymorphism) 44

Object base1 contains integer 10

Object base2 contains character Z

Object derived contains:

Integer: 7

Character: A

Real number: 3.5

Data members of Derived can be accessed individually:

Integer: 7

Character: A

Real number: 3.5

Derived can be treated as an object of either base class:

base1Ptr->getData() yields 7

base2Ptr->getData() yields A

Size of the Base-class and Derived-class Objects
 The size of a derived object is not the sum of the base-class object and derived-class

members

 Probably due to memory alignment and internal representation of derived-class object

 The size of the derived-class object that a base-class handle points to is actually that of
the base-class object.

COMP2012H (Inheritance & polymorphism) 45

#include <iostream>

using namespace std;

class base{

public:

int i; // 4 byes

float f; // 4 bytes

};

class derived: public base{

public:

double d; // 8 bytes

double *dptr; // 8 bytes

char c[100]; // 100 bytes

};

int main(){

// for base object

cout << sizeof (int) << endl;

cout << sizeof (float) << endl;

cout << sizeof (base) << endl << endl;

// for derived object

cout << sizeof (double) << endl;

cout << sizeof (double *) << endl;

cout << sizeof (char [100]) << endl;

cout << sizeof (derived) << endl << endl;

base *bptr = new derived;

cout << sizeof (*bptr) << endl;

derived *dptr = new derived;

cout << sizeof (*dptr) << endl;

return 1;

}

4

4

8

8

8

100

128

8

128

Software Engineering: Customizing Existing Software

with Inheritance

 Inheriting from existing classes

 Can include additional members

 Can redefine base-class members

 No need to have direct access to base class’s source code

 Only need to link to object code

 Good for those independent software vendors (ISVs)

 Develop proprietary code for sale/license

 Available in object-code format

 Users derive new classes

 Without accessing ISV proprietary source code

COMP2012H (Inheritance & polymorphism) 46

Polymorphism

Polymorphism and Dynamic Binding

 “Polymorphic” behavior in functions and classes

 Function name can be overloaded

 Function template is a pattern for multiple functions

 Class template is a pattern for multiple classes

 In these cases the compiler determines which version of the

function or class to use during the compilation time

 Called static or early binding

 Sometimes we don’t know the kind of object until run time

 Dynamic binding

 Usually involves pointers to some objects which are not known beforehand

COMP2012H (Inheritance & polymorphism) 48

Polymorphism with inheritance hierarchies

 “Program in the general” vs. “program in the specific”

 Process objects of classes that are part of the same hierarchy

as if they are objects of a single class

 E.g., vehicles  4-wheel vehicle  passenger car  sport car

 Objects can be created in any part of the chain of hierarchy

 Each object performs the correct tasks for that object’s type

 Different actions occur depending on the type of object

 New classes can be added with little or no modification to

existing code

COMP2012H (Inheritance & polymorphism) 49

Using Handles

 A handle is a variable whose value is the address of that object

 It is a pointer variable (address of the object)

 Refers to the object indirectly

 Handle for base class object can also refer to any derived class

object (SalariedEmployee is derived from Employee)

Employee * eptr; // handle

eptr = new Employee(); or

eptr = new SaleriedEmployee(); // o.k.!

 Then eptr->display(cout); will always work

 It always calls Employee’s member function display if it is implemented

as an actual function, even if it is pointing to SalariedEmployee object

COMP2012H (Inheritance & polymorphism) 50

Invoking Functions

 Cannot aim derived-class pointer to a base-class object

 Aim base-class pointer at base-class object
 Invoke base-class functionality

 Aim derived-class pointer at derived-class object
 Invoke derived-class functionality

 Aim base-class pointer at derived-class object
 Can only invoke base-class functionalities

 Because derived-class object is an (inherited) object of base class

 Invoked functionality depends on the handle type used to invoke the
function (which is base or derived object).
 Therefore, if the handle is base pointer, even if it points to a derived-class

object, it invokes the functionality of base class

 CommissionEmployee1.h,
CommissionEmployee1.cpp,
BasePlusCommissionEmployee1.h,
BasePlusCommissionEmployee1.cpp, tester1a.cpp

COMP2012H (Inheritance & polymorphism) 51

tester1a.cpp Sample Output (1/2)

COMP2012H (Inheritance & polymorphism) 52

Print base-class and derived-class objects:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to

base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

tester1a.cpp Sample Output (2/2)

COMP2012H (Inheritance & polymorphism) 53

Calling print with derived-class pointer to

derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object

invokes base-class print function on that derived-class object:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

Invoking Functions

 The pointer must be a base-class pointer, pointing to a derived-

class object

 All the base class functions of the derived object can be called. This is not

a problem because derived class inherits all the functions from the base

class.

 Because it is a base class pointer, cannot access the members of derived-

class even if the base-class pointer is pointing to the derived-class object

 Aim a derived-class pointer at a base-class object is an error

 C++ compiler generates error

 This is because

 A derived-class pointer is supposed to be able to access all the derived-class

member functions that it points to

 If the pointer is pointing to a base class, some of these derived-class functions

may not even be available at the base class

COMP2012H (Inheritance & polymorphism) 54

Summary of the Allowed Assignments

 Four ways to aim base-class and derived-class pointers at base-

class and derived-class objects

COMP2012H (Inheritance & polymorphism) 55

Base object Derived object

Base pointer Straightforward Is safe, but can be used to invoke only

member functions that base-class declares;

Can achieve polymorphism with virtual

function

Derived pointer Compilation error Straightforward

Polymorphism and Dynamic Binding

 So far, we have seen how a base-class handle can bind dynamically
to a derived-class object

 But the functions that can be used are still of the base-class

 We want to call the functions of the derived class

 Example: Animal hierarchy

 Animal base class – every derived class has function move

 Different animal objects maintained as a vector of Animal pointers

 Program issues same message (move) to each animal generically

 Proper function gets called

 A Fish will move by swimming

 A Frog will move by jumping

 A Bird will move by flying

 Another example: Computer games

 Different characters, if hit, may have their scores updated differently (using,
e.g., an update_score() function)

COMP2012H (Inheritance & polymorphism) 56

Virtual Functions and Dynamic Binding

 Which version is called must be deferred to run time

 This is dynamic or late binding

 Accomplished with virtual functions

 Each object contains some virtual function

 Compiler creates a virtual function table (vtbl) for each object

 Table of pointers to actual codes of the required function (e.g., move),

which is to the actual function implementation of the derived class

 Make it possible to invoke the object type’s functionality (the actual

derived class object), rather than invoke the handle type’s (i.e., the type of

the pointer) functionality

 Crucial to implementing polymorphic behavior

COMP2012H (Inheritance & polymorphism) 57

Virtual Functions

 Normally handle determines which class’s functionality to invoke

 If it is of base-class pointer, base member functions will be invoked even
though the object that it points to is a derived class

 With virtual functions

 Type of the object being pointed to, not type of the handle, determines which
version of a virtual function to invoke

 Allows program to dynamically (at runtime rather than compile time)
determine which function to use

 Dynamic binding or late binding

 Declared by preceding the function’s prototype with the keyword
virtual in base class

 Derived classes override function as appropriate

 Replacing the function

 A call to the function will use the definition of the derived class

COMP2012H (Inheritance & polymorphism) 58

Virtual Functions (Cont.)

 Once declared virtual, a function remains virtual all the way down the
hierarchy

 Even so, as a good software practice, you should put virtual to all the functions
you want to make virtual

 Static binding

 When calling a virtual function using specific object with dot operator, function
invocation is resolved at compile time

 E.g., obj.virtual_function(); // known obj type at compilation

 Dynamic binding

 Dynamic binding occurs only for pointer and reference handles when the objects that
these handles point to are not known at compile time

 CommissionEmployee2.h, CommissionEmployee2.cpp,
BasePlusCommissionEmployee2.h, BasePlusCommissionEmployee2.cpp,
test2er.cpp

 Note the use of virtual keyword in both base and derived classes

COMP2012H (Inheritance & polymorphism) 59

tester2.cpp Sample Output (1/3)

COMP2012H (Inheritance & polymorphism) 60

Invoking print function on base-class and derived-class

objects with static binding

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class

objects with dynamic binding

tester2.cpp Sample Output (2/3)

COMP2012H (Inheritance & polymorphism) 61

Calling virtual function print with base-class pointer

to base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

tester2.cpp Sample Output (3/3)

COMP2012H (Inheritance & polymorphism) 62

Calling virtual function print with base-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Determining the Type of Object Using

dyanmic_cast

 dynamic_cast can be used only with pointers and references to base class
objects. Its purpose is to ensure that the result of the type conversion is a valid
complete object of the requested class.

 Return NULL is not so

COMP2012H (Inheritance & polymorphism) 63

#include <iostream>

#include <typeinfo>

#include <string>

using namespace std;

class base{

public:

virtual void print(){ cout << "Base object\n";}

};

class derived: public base{

public:

virtual void print(){ cout << "Derived object\n"; }

};

int main(){

base * bptr[2];

// check whether it points to a derived obj

derived * is_derived;

bptr[0] = new base();

bptr[1] = new derived();

// check whether the pointer can be successfully cast

is_derived = dynamic_cast< derived * > (bptr[0]);

if(is_derived)

cout << "bptr[0] is a derived object.\n";

else

cout << "bptr[0] is a base object.\n";

is_derived = dynamic_cast< derived * > (bptr[1]);

if(is_derived)

// derived class

is_derived -> print(); // call derived functions

else

// is_derived is NULL; base class

bptr[1] -> print(); // call base functions

return 0;

}

bptr[0] is a base object.

Derived object

Abstract and Concrete Classes

 Classes from which the programmer never intends to instantiate

any objects

 Incomplete—derived classes must define the “missing pieces” or “missing

parts”

 Too generic to define any real objects out of it

 Normally used as base classes, called abstract base classes

 Provides an appropriate base class from which other classes can inherit

 Classes used to instantiate objects are called concrete classes

 Must provide implementation for every member function they define

COMP2012H (Inheritance & polymorphism) 64

Pure Virtual Functions

 A class is made abstract by declaring one or more of its virtual

functions to be “pure”

 No object can be created out of it

 Placing “= 0” in its declaration

 Example: virtual void draw() const = 0;

 “= 0” is known as a pure specifier

 Do not provide implementations

 Every concrete derived class must override all base-class pure virtual

functions with concrete implementations

 If not overridden, derived-class will also be abstract

 Used when it does not make sense for base class to have an

implementation of a function, but the programmer wants all

concrete derived classes to implement the function

COMP2012H (Inheritance & polymorphism) 65

Abstract Classes and Pure Virtual Functions

 We can use the abstract base class to declare pointers and

references

 Can point to objects of any concrete class derived from the abstract class

 Programs typically use such pointers and references to manipulate

derived-class objects polymorphically

 Polymorphism is particularly effective for implementing software

systems

 E.g., reading or writing data from and to different devices of the same

base class

 Iterator class (using base class pointer)

 Can traverse all the objects in a container

COMP2012H (Inheritance & polymorphism) 66

COMP2012H (Inheritance & polymorphism) 67

#include <iostream>

using namespace std;

class base{

public:

virtual void print() = 0;

virtual void print2() = 0;

};

class derived1: public base{

public:

virtual void print(){

cout << "derived1\n";

}

virtual void print2(){} // must have this line,

// otherwise compiler complains in main()

};

class derived2: public base{

public:

virtual void print(){

cout << "in derived2\n";

}

// do not need to define print2() here as

// derived2 is not a concrete class

};

class derived3: protected derived2{

public:

virtual void print2(){

cout << "In derived3\n";

}

};

int main(){

derived1 d1;

// derived2 d2; compiler complains:

// the following virtual functions are abstract:

// void base::print2()

derived3 d3;

d1.print();

// d3.print(); print() is inaccessible; ok if

public inheritance

d3.print2();

base * bptr1 = new derived1(); // ok

// base * bptr2 = new derived3();

// base is an inaccessible base of derived3

// derived2 *d2ptr = new derived3();

// derived2 is an inaccessible base of derived3

return 1;

}

derived1

In derived3

Case Study: Payroll System Using Polymorphism

 Enhanced CommissionEmployee-BasePlusCommissionEmployee
hierarchy using an abstract base class

 Abstract class Employee represents the general concept of an
employee

 Declares the “interface” to the hierarchy

 Each employee has a first name, last name and social security number

 Earnings calculated differently and objects printed differently
for each derived class

COMP2012H (Inheritance & polymorphism) 68

Creating Abstract Base Class Employee

 Provides various get and set functions

 Provides functions earnings()and print()

 Function earnings()depends on type of employee, so declared pure

virtual

 Not enough information in class Employee for a default implementation

 Function print()is virtual, but not pure virtual

 Default implementation provided in Employee

 Example maintains a vector of Employee pointers

 Polymorphically invokes proper earnings and print functions

COMP2012H (Inheritance & polymorphism) 69

Polymorphic Interface

COMP2012H (Inheritance & polymorphism) 70

Creating Concrete Derived Class

 SalariedEmployee inherits from Employee

 Includes a weekly salary

 Overridden earnings function incorporates weekly salary

 Overridden print function incorporates weekly salary

 Is a concrete class (implements all pure virtual functions in abstract base

class)

COMP2012H (Inheritance & polymorphism) 71

SalariedEmployee.h

 SalariedEmployee inherits from Employee, must override earnings
to be concrete

 Functions earnings and print in the base class will be
overridden (earnings defined for the first time)

COMP2012H (Inheritance & polymorphism) 72

class SalariedEmployee : public Employee {

public:

SalariedEmployee(const string &, const string &,

const string &, double = 0.0);

void setWeeklySalary(double); // set weekly salary

double getWeeklySalary() const; // return weekly salary

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const; // print SalariedEmployee object

private:

double weeklySalary; // salary per week

};

Creating Indirect Concrete Derived Class

 BasePlusCommissionEmployee inherits from CommissionEmployee

 Includes base salary

 Overridden earnings() function that incorporates base salary

 Overridden print() function that incorporates base salary

 Concrete class

 Not necessary to override earnings() to make it concrete, can inherit

implementation from CommissionEmployee

 Although we do override earnings() to incorporate base salary

COMP2012H (Inheritance & polymorphism) 73

Demonstrating Polymorphic Processing

 Create objects of types SalariedEmployee, HourlyEmployee,

CommissionEmployee and BasePlusCommissionEmployee

 Demonstrate manipulating objects with static binding

 Using name handles rather than pointers or references

 Compiler can identify each object’s type to determine which print and earnings

functions to call

 Demonstrate manipulating objects polymorphically

 Uses a vector of Employee pointers

 Invoke virtual functions using pointers and references

 One may also “cast” a derived object to its base class:

Base b = derived_obj;

COMP2012H (Inheritance & polymorphism) 74

payroll.cpp Sample Output (1/3)

COMP2012H (Inheritance & polymorphism) 75

Employees processed individually using static binding:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

payroll.cpp Sample Output (2/3)

COMP2012H (Inheritance & polymorphism) 76

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

payroll.cpp Sample Output (3/3)

COMP2012H (Inheritance & polymorphism) 77

Virtual function calls made off base-class references:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

Last Test: What is the Output? (1)

COMP2012H (Inheritance & polymorphism) 78

#include <iostream>

using namespace std;

class A {

public:

A() {}

void f() {cout << "A::f()" << endl;}

};

class B: public A {

public:

B() {}

void f() {cout << "B::f()" << endl;}

};

class C: public B {

public:

C() {}

void f() {cout << "C::f()" << endl;}

};

int main(){

A* z = new A;

z->f();

delete z;

A* x = new B;

x->f();

delete x;

A* y = new C;

y->f();

delete y;

return 0;

}

Output:

A::f()

A::f()

A::f()

Last Test: What if we add virtual to class A (and

everything else remains the same)?

COMP2012H (Inheritance & polymorphism) 79

class A {

public:

A() {}

virtual void f() {cout << "A::f()" << endl;}

};

Output:

A::f()

B::f()

C::f()

Virtual Destructors

 Nonvirtual destructors

 Destructors that are not declared with keyword virtual

 If a derived-class object is destroyed explicitly by applying the delete

operator to a base-class pointer to the object, the behavior is undefined

 This is because delete may be applied on a base-class object, instead

of the derived class

 virtual destructors

 Declared with keyword virtual

 That means that all derived-class destructors are virtual

 With that, if a derived-class object is destroyed explicitly by applying the

delete operator to a base-class pointer to the object, the appropriate

derived-class destructor is then called

 Appropriate base-class destructor(s) will execute afterwards

COMP2012H (Inheritance & polymorphism) 80

COMP2012H (Inheritance & polymorphism) 81

#include <iostream>

using namespace std;

class Base{

public:

virtual ~Base() { cout <<"Base Destroyed\n"; }

};

class Derived: public Base{

public:

virtual ~Derived() { cout << "Derived Destroyed\n"; }

};

int main(){

Derived d;

Base *bptr = new Derived();

delete bptr; // explicit delete  call the destructor immediately

bptr = new Derived(); // the object will be deleted by garbage collection

// after program exits, and hence no destructor statement

return 0;

}

Derived Destroyed (for “delete bptr”)

Base Destroyed

Derived Destroyed (for object d going out of scope)

Base Destroyed

