
Inheritance and Polymorphism

N:14; D:12,13,25

H.O. #11

Fall 2015

Gary Chan

Outline

 Inheritance and Object-Oriented Design

 Types of Inheritance

 Building Derived Classes

 Order of Construction and Destruction

 Multiple Inheritance

 Polymorphism

 Virtual Functions

 Abstract Class

COMP2012H (Inheritance & polymorphism) 2

Encapsulation

 Languages such as Pascal and C facilitated development of
structured programs

 Need for ability to extend and reuse software became evident

 This leads to object-oriented programming where objects are built on top
of other objects

 Data and basic operations for processing the data are
encapsulated into a single “entity”. This is made possible with
introduction of

 Modules

 Libraries

 Packages

 Implementation details are separated from class definition

 Client code must use only public operations

 Implementation may be changed without affecting client code

COMP2012H (Inheritance & polymorphism) 3

Encapsulation with Inheritance

 Some basic class features may be re-used in other classes

 A class can be derived from another class

 New class inherits data and function members from the original class

 Reusable for the new class

 Example: Consider the design of a new stack class which adds,

for example max() and min(), functions to a stack

 It is better to build “on top” of the proven stack by adding the functions

 The new class is inherited or derived from the stack class

 Obviously, this concept is different from creating a new class with a stack

as its member object, because a stack cannot contain a stack

COMP2012H (Inheritance & polymorphism) 4

Inheritance Features and Advantages

 Software reusability

 Often used in computer game design

 Create new class from existing class

 Seamlessly absorb existing class’s data and behaviors

 Enhance with new capabilities

 Derived class inherits from base class

 More specialized objects

 Behaviors inherited from base class

 Can customize

 Additional behaviors

COMP2012H (Inheritance & polymorphism) 5

Inheritance Example

(Some Examples with Arrows Reversed)

COMP2012H (Inheritance & polymorphism) 6

Another Inheritance Example

COMP2012H (Inheritance & polymorphism) 7

Inheritance for Stack

 Adapter approach

 Build a new revised class RevStack

 Contains Stack object as its member

 But …

 Strictly speaking or conceptually, we cannot

say anymore a RevStack is a Stack,

because it contains a Stack

 To access the functions of Stack, we need to

call: RevStk.myStack.push(); for a stack we

prefer simply RevStk.push()

COMP2012H (Inheritance & polymorphism) 8

max(), min() and other

new operations including

revised max() and min()

Stack myStack

push(), pop()…

myTop, …

new data members…

RevStack class

How about copy-and-paste?

 To modify the member functions, we may use copy-and-paste
approach

 Build a RevStack class (Revised Stack)

 Copy and paste those data members and function members in Stack

 Add the max() and min()

 Problem

 RevStack and Stack are now separate and independent classes

 If we update some common member functions in Stack, we must change
RevStack versions

COMP2012H (Inheritance & polymorphism) 9

max(), min() and other new operations

push(), pop()

myTop, …

new data members…

RevStack class

push(), pop()

myTop, …

Stack class

Inheritance

 Object-oriented approach

 Derive a new class, RevStack from Stack

 Stack is the base class or superclass

 RevStack is a derived class or subclass

 Derived class inherits all members of base class

 Modifying Stack class automatically updates Revstack class

COMP2012H (Inheritance & polymorphism) 10

max(), min() and other new operations

new data members…

RevStack class

push(), pop()

myTop, …

Stack class

Relationships Between Classes

 Inheritance

 “is-a” relationship

 Derived class object can be treated as base class object

 Example: Car is a vehicle

 Vehicle properties/behaviors also apply to a car

 Composition (class in class)

 “has-a” relationship

 Object contains one or more objects of other classes as members

 Example: A car object has a steering wheel object

COMP2012H (Inheritance & polymorphism) 11

Car

Vehicle

Class-in-Class (Object-in-Object) vs. Inheritance

 A class declares another class as its data member, hence creating an

object within another object

 Inheritance and class-in-class are two quite different things and

concepts in implementation and OOP.

 Inheritance has a "is-a" relationship between derived class and base

class, while class-in-class is a "has-a" relationship

 Generally, we can decide whether to use inheritance or class-in-class

by common sense. If we can find some common relationship between

two or more things, we should use inheritance.

 For example, Citizen and Student with Citizen as the base class. It makes no

sense to implement a Citizen class inside a Student class.

 In class-in-class, the inner class is a standalone object. Thus, the inner

class and the outer class do not share the powerful features in

inheritance (such as polymorphism and dynamic binding).

COMP2012H (Inheritance & polymorphism) 12

Relationships Between Inheritance Classes

 Base classes and derived classes

 Object of one class “is an” object of another class

 Example: Rectangle is a quadrilateral

 Class Rectangle inherits from class Quadrilateral

 Quadrilateral is the base class

 Rectangle is the derived class

 Base class typically represents larger set of objects than

derived classes

 Base class: Vehicle

 Includes cars, trucks, boats, bicycles, etc.

 Derived class: Car

 Smaller, more-specific subset of vehicles

COMP2012H (Inheritance & polymorphism) 13

Inheritance Concept

 When class C2 is derived from class C1

 Class C2 is-a C1

 A HuntingLicense is-a License

 Use public inheritance only for “is-a” relationships

 When class D1 contains a class D2 object as an element

 D1 has-a D2

 A License has-a Date

 Inheritance should not be used for has-a relationships

COMP2012H (Inheritance & polymorphism) 14

Hunting

License

License Date

“Uses-a” Relationships Between Classes

 If class D1 needs information from class D2

 Then D1 uses-a D2

 An AutoInsurance class needs the name from a DriversLicense
class

 May be implemented as class-in-class

COMP2012H (Inheritance & polymorphism) 15

Motorcycle

License

Car

License

Deer

License

Pheasant

License

Auto-Insurance

Drivers

License

Hunting

License

License

…

Class hierarchy

 Direct base class

 Inherited explicitly (one level up hierarchy)

 E.g., driver licenses and license

 Indirect base class

 Inherited two or more levels up hierarchy

 E.g., car license and license

 Single inheritance

 Inherits from one base class

 E.g., the above license example

 Multiple inheritance

 Inherits from multiple base classes

 Base classes possibly unrelated

 E.g., A “university student” is both a “hard-working person” and a “clever
person”

COMP2012H (Inheritance & polymorphism) 16

 kind is one of

 public: direct access to public region

 private: does not allow direct access of the private region

 protected: allowing protected region to be directly accessed by derived

class and not other classes

Declaration of a Derived Class

COMP2012H (Inheritance & polymorphism) 17

class DerivedClassName : kind BaseClassName

{

public:

// new data members

private: // or protected

// functions for derived class

...

};

Access Previledge of Derived Class

 Derived class inherits all members of base class

 And members of all its ancestor classes

 Always cannot access directly private members of base class

 Regarding public and protected members of the upstream class,

the kind of access a derived class has depends on kind of

inheritance

COMP2012H (Inheritance & polymorphism) 18

protected members

 In the base class, the private data members cannot be

accessed by its derived class

 In the base class, the protected data members is like private

members to other classes

 However, the derived class can access it directly as if it is a private

member

 An example of the use of protected keyword:

keyword_protected.cpp

COMP2012H (Inheritance & polymorphism) 19

Protected Access

 Intermediate level of protection between public and

private

 For both data members and function members

 Want the derived class to directly access members while forbid other

classes to access them directly

 protected members in the Base class are accessible to

 Base class members

 Base class friends

 Derived class members

 Derived class friends

 Derived-class members

 May use the public and protected members of base class

 Simply use member names as its own members

COMP2012H (Inheritance & polymorphism) 20

Types of Inheritance and Region Transformation
 public inheritance (written as class derived: public base)

 Base class public members derived class public members

 Base class protected members derived class protected members

 All classes can directly access the public members

 Only the derived classes can directly access the protected members

 protected inheritance (written as class derived: protected base)

 Base class public and protected members derived class protected members

 Classes in the inheritance hierarchy can still access the members (because they are protected members),
but not for other classes

 private inheritance (written as class derived: private base)

 Base class public and protected members derived class private members

 Classes in the downstream inheritance hierarchy can no longer access the members (and neither can all the
other classes)

COMP2012H (Inheritance & polymorphism) 21

public

protected

public

protected

public

protected

protected

protected

public

protected

private

private

Base class Derived classpublic

protected

private

Types of Inheritance and Member Access

COMP2012H (Inheritance & polymorphism) 22
class derived: public base class derived:

protected base

class derived: private base

kind.cpp: Illustration of kinds of inheritance

 Note how the protected members are accessed in different

derived classes

 Note how the public and protected members of Base class are

changed by the kind of inheritance. Their accessibility is also

changed.

COMP2012H (Inheritance & polymorphism) 23

Public Inheritance

 Specify with:

class TwoDimensionalShape : public Shape

 Class TwoDimensionalShape inherits from class Shape

 Base class private members

 Not accessible directly (still inherited)

 Manipulated through inherited public member functions

 Base class public and protected members

 Inherited with original member access

 friend functions

 Not inherited

COMP2012H (Inheritance & polymorphism) 24

Building Derived Classes (for public Inheritance)

 Derived class constructors

 Use parent class's constructors to initialize base class members

 Is actually a call to the base class constructor

 The member-initializer list initializes member objects

 Need to explicitly invoke base-class constructors in the member initializer

 Accessing inherited data members

 If base class data public, derived class can access, even alter it

 If base class protected, can also alter it directly

 If base class data private, must use accessor functions

COMP2012H (Inheritance & polymorphism) 25

Building Derived Classes: Reusing Operations

 Derived class may extend or replace base class function of the

same name

 Possible to call the base class function with scope resolution

operator

COMP2012H (Inheritance & polymorphism) 26

void DerivedClass::foo()

{ // extending the base class function

. . .

BaseClass::foo();

. . .

}

CommissionEmployee Example

 CommissionEmployee

 First name, last name, SSN (Social Security Number, i.e., ID), commission

rate, gross sale amount

 BasePlusCommissionEmployee

 CommissionEmployee: First name, last name, SSN, commission rate, gross

sale amount

 And also base salary

 Class BasePlusCommissionEmployee

 Much of the code is similar to CommissionEmployee

 Additions

 private data member baseSalary

 Methods setBaseSalary and getBaseSalary

COMP2012H (Inheritance & polymorphism) 27

CommissionEmployee Example:

Class BasePlusCommissionEmployee

 Derived from class CommissionEmployee

 Is a CommissionEmployee

 Inherits all public members

 Use base-class initializer syntax to initialize base-class data member

 Has data member baseSalary

 Base class implementation

 CommissionEmployee1.h, CommissionEmployee1.cpp

 Derived class implementation

 BasePlueCommissionEmployee1.h,
BasePlusCommissionEmployee1.cpp

 Compilation error because derived class cannot directly access
private members of CommissionEmployee class in
print() and earnings()

COMP2012H (Inheritance & polymorphism) 28

Protected Access

 Use protected keyword to fix the problem

 CommissionEmployee2.h,

CommissionEmployee2.cpp,

BasePlusCommissionEmployee2.h,

BasePlusCommissionEmployee2.cpp, test2.cpp

COMP2012H (Inheritance & polymorphism) 29

tester2.cpp Sample Output

COMP2012H (Inheritance & polymorphism) 30

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333

Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Using Protected Data Members

 Advantages

 Derived class can modify values directly

 Avoid set/get method call overhead Slight increase in performance

 Disadvantages

 No validity checking: Derived class can assign illegal value to protected

members

 Implementation becomes dependent on the base class

 Derived class functions becomes very dependent on base class implementation

 Using protected access, base class implementation changes may result in

derived class modifications, e.g., a change of the name in the protected region

of the base class may leads to many changes in the derived class

 This leads to fragile (brittle) software

COMP2012H (Inheritance & polymorphism) 31

Best Software Engineering Practice

 Declare data members as private

 Provide public get and set functions

 Use get and set method to obtain and set values of data

members

 CommissionEmployee3.h,

CommissionEmployee3.cpp,

BasePlusCommissionEmployee3.h,

BasePlusCommissionEmployee3.cpp,

tester3.cpp

COMP2012H (Inheritance & polymorphism) 32

tester3.cpp Sample Output

COMP2012H (Inheritance & polymorphism) 33

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333

Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Remarks

 Using a member function to access a data member’s value can

be slightly slower than accessing the data directly.

 But programmers should write code that adheres to proper software

engineering principles, and leave optimization issues to the compiler

 In function over-riding, failure to use the scope :: operator

prefixed with the name of the base class when referencing the

base class’s member function causes infinite recursion (as the

derived-class member function calls itself)

 E.g., The earnings() function in the base class is overridden by

double BasePlusCommissionEmployee::earnings() const

in BasePlusCommissionEmployee3.cpp

COMP2012H (Inheritance & polymorphism) 34

Base and Derived Functions: Function Over-riding,

not Over-loading/co-existing functions

 In the derived class, having a member function with the same name as a base
class function hides (or overrides) the base-class version of the function

 It is OK to call d.print() if print were not defined at all in the
Derived class (prints out base)

COMP2012H (Inheritance & polymorphism) 35

class Base{

public:

void print(){cout << "base\n";}

};

class Derived: public Base{

public:

void print(int i){ cout << i << " Derived\n";}

void print(char ch){ cout << ch << " Derived\n";}

};

int main(){

Derived d;

d.print(2); // print 2 Derived

d.print('d'); // print d Derived

// d.print(); Not O.K.: no matching function for Derived::print()

return 0;

}

Order of Construction
 Called at the initializer list, e.g., Derived:: Derived():
Base(){…}

 The base class MUST be constructed in the initializer

 You MUST only call the immediate/direct base class constructor

 Chain of constructor calls to instantiate derived-class object:

 Derived-class constructor invokes base class constructor

 Implicitly or explicitly

 Base-class constructor: Base of inheritance hierarchy

 Like a recursive stack

 Initializing data members

 Each base-class constructor initializes its data members that are inherited by derived class

 When a program creates a derived-class object:

1. The derived-class constructor immediately calls the base-class constructor

2. The base-class constructor’s body (i.e., within {}) executes

3. Then the derived class’s member initializer list execute

4. Finally the derived-class constructor’s body executes

 This process cascades up the hierarchy if the hierarchy contains more than
two levels in a recursive manner

COMP2012H (Inheritance & polymorphism) 36

Order of Destruction

 Chain of destructor calls to destroy derived-class object:

 Reverse order of constructor chain

 Destructor of derived-class is called first

 Destructor of the next base class up hierarchy next

 Continue up hierarchy until final base reached

 After final base-class destructor, object is removed from memory

 Base-class constructors, destructors, assignment operators

 Not inherited by derived classes

 Example on order of construction and destruction

 CommissionEmployee4.h, CommissionEmployee4.cpp,

BasePlusCommissionEmployee4.h,

BasePlusCommissionEmployee4.cpp, order.cpp

COMP2012H (Inheritance & polymorphism) 37

order.cpp Sample Output (1/4)

COMP2012H (Inheritance & polymorphism) 38

CommissionEmployee constructor:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

CommissionEmployee destructor:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

CommissionEmployee constructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

CommissionEmployee constructor

called for object in block;

destructor called immediately as

execution leaves scope

Base-class CommissionEmployee

constructor executes first when

instantiating derived-class

BasePlusCommissionEmployee object

order.cpp Sample Output (2/4)

COMP2012H (Inheritance & polymorphism) 39

BasePlusCommissionEmployee constructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

base salary: 800.00

CommissionEmployee constructor:

commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

Derived-class BasePlusCommissionEmployee

constructor body executes after base-class

CommissionEmployee’s constructor finishes execution

Base-class CommissionEmployee constructor

executes first when instantiating derived-class

BasePlusCommissionEmployee object

order.cpp Sample Output (3/4)

COMP2012H (Inheritance & polymorphism) 40

BasePlusCommissionEmployee constructor:

base-salaried commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

base salary: 2000.00

BasePlusCommissionEmployee destructor:

base-salaried commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

base salary: 2000.00

CommissionEmployee destructor:

commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

Derived-class BasePlusCommissionEmployee

constructor body executes after base-class

CommissionEmployee’s constructor finishes execution

Destructors for

BasePlusCommissionEmployee object

called in reverse order of constructors

order.cpp Sample Output (4/4)

COMP2012H (Inheritance & polymorphism) 41

BasePlusCommissionEmployee destructor:

base-salaried commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

base salary: 800.00

CommissionEmployee destructor:

commission employee: Lisa Jones

social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

Destructors for BasePlusCommissionEmployee object

called in reverse order of constructors

Multiple Inheritence

 When a derived class inherits members from two or more base

classes

 Provide comma-separated list of base classes after the colon following the

derived class name

 Can cause ambiguity problems

 Should be used only by experienced programmers

 Newer languages do not allow multiple inheritance

 A common issue occurs if more than one base class contains a member with

the same name

 Solved by using the binary scope resolution operator

COMP2012H (Inheritance & polymorphism) 42

Multiple Inheritence (Cont.)

 Should be used when an “is a” relationship exists between a

new type and two or more existing types

 i.e. type A “is a” type B and type A “is a” type C

 Can introduce complexity into a system

 Great care is required in the design of a system to use multiple

inheritance properly

 Should not be used when single inheritance and/or composition will do the

job

 Example:

 Base1.h, Base2.h, Derived.h, Derived.cpp,

multiple.cpp

COMP2012H (Inheritance & polymorphism) 43

multiple.cpp Sample Output

 Note the use of base-class pointer pointing to a derived-class objects

 Invoking the member function of the derived object

COMP2012H (Inheritance & polymorphism) 44

Object base1 contains integer 10

Object base2 contains character Z

Object derived contains:

Integer: 7

Character: A

Real number: 3.5

Data members of Derived can be accessed individually:

Integer: 7

Character: A

Real number: 3.5

Derived can be treated as an object of either base class:

base1Ptr->getData() yields 7

base2Ptr->getData() yields A

Size of the Base-class and Derived-class Objects
 The size of a derived object is not the sum of the base-class object and derived-class

members

 Probably due to memory alignment and internal representation of derived-class object

 The size of the derived-class object that a base-class handle points to is actually that of
the base-class object.

COMP2012H (Inheritance & polymorphism) 45

#include <iostream>

using namespace std;

class base{

public:

int i; // 4 byes

float f; // 4 bytes

};

class derived: public base{

public:

double d; // 8 bytes

double *dptr; // 8 bytes

char c[100]; // 100 bytes

};

int main(){

// for base object

cout << sizeof (int) << endl;

cout << sizeof (float) << endl;

cout << sizeof (base) << endl << endl;

// for derived object

cout << sizeof (double) << endl;

cout << sizeof (double *) << endl;

cout << sizeof (char [100]) << endl;

cout << sizeof (derived) << endl << endl;

base *bptr = new derived;

cout << sizeof (*bptr) << endl;

derived *dptr = new derived;

cout << sizeof (*dptr) << endl;

return 1;

}

4

4

8

8

8

100

128

8

128

Software Engineering: Customizing Existing Software

with Inheritance

 Inheriting from existing classes

 Can include additional members

 Can redefine base-class members

 No need to have direct access to base class’s source code

 Only need to link to object code

 Good for those independent software vendors (ISVs)

 Develop proprietary code for sale/license

 Available in object-code format

 Users derive new classes

 Without accessing ISV proprietary source code

COMP2012H (Inheritance & polymorphism) 46

Polymorphism

Polymorphism and Dynamic Binding

 “Polymorphic” behavior in functions and classes

 Function name can be overloaded

 Function template is a pattern for multiple functions

 Class template is a pattern for multiple classes

 In these cases the compiler determines which version of the

function or class to use during the compilation time

 Called static or early binding

 Sometimes we don’t know the kind of object until run time

 Dynamic binding

 Usually involves pointers to some objects which are not known beforehand

COMP2012H (Inheritance & polymorphism) 48

Polymorphism with inheritance hierarchies

 “Program in the general” vs. “program in the specific”

 Process objects of classes that are part of the same hierarchy

as if they are objects of a single class

 E.g., vehicles 4-wheel vehicle passenger car sport car

 Objects can be created in any part of the chain of hierarchy

 Each object performs the correct tasks for that object’s type

 Different actions occur depending on the type of object

 New classes can be added with little or no modification to

existing code

COMP2012H (Inheritance & polymorphism) 49

Using Handles

 A handle is a variable whose value is the address of that object

 It is a pointer variable (address of the object)

 Refers to the object indirectly

 Handle for base class object can also refer to any derived class

object (SalariedEmployee is derived from Employee)

Employee * eptr; // handle

eptr = new Employee(); or

eptr = new SaleriedEmployee(); // o.k.!

 Then eptr->display(cout); will always work

 It always calls Employee’s member function display if it is implemented

as an actual function, even if it is pointing to SalariedEmployee object

COMP2012H (Inheritance & polymorphism) 50

Invoking Functions

 Cannot aim derived-class pointer to a base-class object

 Aim base-class pointer at base-class object
 Invoke base-class functionality

 Aim derived-class pointer at derived-class object
 Invoke derived-class functionality

 Aim base-class pointer at derived-class object
 Can only invoke base-class functionalities

 Because derived-class object is an (inherited) object of base class

 Invoked functionality depends on the handle type used to invoke the
function (which is base or derived object).
 Therefore, if the handle is base pointer, even if it points to a derived-class

object, it invokes the functionality of base class

 CommissionEmployee1.h,
CommissionEmployee1.cpp,
BasePlusCommissionEmployee1.h,
BasePlusCommissionEmployee1.cpp, tester1a.cpp

COMP2012H (Inheritance & polymorphism) 51

tester1a.cpp Sample Output (1/2)

COMP2012H (Inheritance & polymorphism) 52

Print base-class and derived-class objects:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to

base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

tester1a.cpp Sample Output (2/2)

COMP2012H (Inheritance & polymorphism) 53

Calling print with derived-class pointer to

derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object

invokes base-class print function on that derived-class object:

commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

Invoking Functions

 The pointer must be a base-class pointer, pointing to a derived-

class object

 All the base class functions of the derived object can be called. This is not

a problem because derived class inherits all the functions from the base

class.

 Because it is a base class pointer, cannot access the members of derived-

class even if the base-class pointer is pointing to the derived-class object

 Aim a derived-class pointer at a base-class object is an error

 C++ compiler generates error

 This is because

 A derived-class pointer is supposed to be able to access all the derived-class

member functions that it points to

 If the pointer is pointing to a base class, some of these derived-class functions

may not even be available at the base class

COMP2012H (Inheritance & polymorphism) 54

Summary of the Allowed Assignments

 Four ways to aim base-class and derived-class pointers at base-

class and derived-class objects

COMP2012H (Inheritance & polymorphism) 55

Base object Derived object

Base pointer Straightforward Is safe, but can be used to invoke only

member functions that base-class declares;

Can achieve polymorphism with virtual

function

Derived pointer Compilation error Straightforward

Polymorphism and Dynamic Binding

 So far, we have seen how a base-class handle can bind dynamically
to a derived-class object

 But the functions that can be used are still of the base-class

 We want to call the functions of the derived class

 Example: Animal hierarchy

 Animal base class – every derived class has function move

 Different animal objects maintained as a vector of Animal pointers

 Program issues same message (move) to each animal generically

 Proper function gets called

 A Fish will move by swimming

 A Frog will move by jumping

 A Bird will move by flying

 Another example: Computer games

 Different characters, if hit, may have their scores updated differently (using,
e.g., an update_score() function)

COMP2012H (Inheritance & polymorphism) 56

Virtual Functions and Dynamic Binding

 Which version is called must be deferred to run time

 This is dynamic or late binding

 Accomplished with virtual functions

 Each object contains some virtual function

 Compiler creates a virtual function table (vtbl) for each object

 Table of pointers to actual codes of the required function (e.g., move),

which is to the actual function implementation of the derived class

 Make it possible to invoke the object type’s functionality (the actual

derived class object), rather than invoke the handle type’s (i.e., the type of

the pointer) functionality

 Crucial to implementing polymorphic behavior

COMP2012H (Inheritance & polymorphism) 57

Virtual Functions

 Normally handle determines which class’s functionality to invoke

 If it is of base-class pointer, base member functions will be invoked even
though the object that it points to is a derived class

 With virtual functions

 Type of the object being pointed to, not type of the handle, determines which
version of a virtual function to invoke

 Allows program to dynamically (at runtime rather than compile time)
determine which function to use

 Dynamic binding or late binding

 Declared by preceding the function’s prototype with the keyword
virtual in base class

 Derived classes override function as appropriate

 Replacing the function

 A call to the function will use the definition of the derived class

COMP2012H (Inheritance & polymorphism) 58

Virtual Functions (Cont.)

 Once declared virtual, a function remains virtual all the way down the
hierarchy

 Even so, as a good software practice, you should put virtual to all the functions
you want to make virtual

 Static binding

 When calling a virtual function using specific object with dot operator, function
invocation is resolved at compile time

 E.g., obj.virtual_function(); // known obj type at compilation

 Dynamic binding

 Dynamic binding occurs only for pointer and reference handles when the objects that
these handles point to are not known at compile time

 CommissionEmployee2.h, CommissionEmployee2.cpp,
BasePlusCommissionEmployee2.h, BasePlusCommissionEmployee2.cpp,
test2er.cpp

 Note the use of virtual keyword in both base and derived classes

COMP2012H (Inheritance & polymorphism) 59

tester2.cpp Sample Output (1/3)

COMP2012H (Inheritance & polymorphism) 60

Invoking print function on base-class and derived-class

objects with static binding

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class

objects with dynamic binding

tester2.cpp Sample Output (2/3)

COMP2012H (Inheritance & polymorphism) 61

Calling virtual function print with base-class pointer

to base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

tester2.cpp Sample Output (3/3)

COMP2012H (Inheritance & polymorphism) 62

Calling virtual function print with base-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Determining the Type of Object Using

dyanmic_cast

 dynamic_cast can be used only with pointers and references to base class
objects. Its purpose is to ensure that the result of the type conversion is a valid
complete object of the requested class.

 Return NULL is not so

COMP2012H (Inheritance & polymorphism) 63

#include <iostream>

#include <typeinfo>

#include <string>

using namespace std;

class base{

public:

virtual void print(){ cout << "Base object\n";}

};

class derived: public base{

public:

virtual void print(){ cout << "Derived object\n"; }

};

int main(){

base * bptr[2];

// check whether it points to a derived obj

derived * is_derived;

bptr[0] = new base();

bptr[1] = new derived();

// check whether the pointer can be successfully cast

is_derived = dynamic_cast< derived * > (bptr[0]);

if(is_derived)

cout << "bptr[0] is a derived object.\n";

else

cout << "bptr[0] is a base object.\n";

is_derived = dynamic_cast< derived * > (bptr[1]);

if(is_derived)

// derived class

is_derived -> print(); // call derived functions

else

// is_derived is NULL; base class

bptr[1] -> print(); // call base functions

return 0;

}

bptr[0] is a base object.

Derived object

Abstract and Concrete Classes

 Classes from which the programmer never intends to instantiate

any objects

 Incomplete—derived classes must define the “missing pieces” or “missing

parts”

 Too generic to define any real objects out of it

 Normally used as base classes, called abstract base classes

 Provides an appropriate base class from which other classes can inherit

 Classes used to instantiate objects are called concrete classes

 Must provide implementation for every member function they define

COMP2012H (Inheritance & polymorphism) 64

Pure Virtual Functions

 A class is made abstract by declaring one or more of its virtual

functions to be “pure”

 No object can be created out of it

 Placing “= 0” in its declaration

 Example: virtual void draw() const = 0;

 “= 0” is known as a pure specifier

 Do not provide implementations

 Every concrete derived class must override all base-class pure virtual

functions with concrete implementations

 If not overridden, derived-class will also be abstract

 Used when it does not make sense for base class to have an

implementation of a function, but the programmer wants all

concrete derived classes to implement the function

COMP2012H (Inheritance & polymorphism) 65

Abstract Classes and Pure Virtual Functions

 We can use the abstract base class to declare pointers and

references

 Can point to objects of any concrete class derived from the abstract class

 Programs typically use such pointers and references to manipulate

derived-class objects polymorphically

 Polymorphism is particularly effective for implementing software

systems

 E.g., reading or writing data from and to different devices of the same

base class

 Iterator class (using base class pointer)

 Can traverse all the objects in a container

COMP2012H (Inheritance & polymorphism) 66

COMP2012H (Inheritance & polymorphism) 67

#include <iostream>

using namespace std;

class base{

public:

virtual void print() = 0;

virtual void print2() = 0;

};

class derived1: public base{

public:

virtual void print(){

cout << "derived1\n";

}

virtual void print2(){} // must have this line,

// otherwise compiler complains in main()

};

class derived2: public base{

public:

virtual void print(){

cout << "in derived2\n";

}

// do not need to define print2() here as

// derived2 is not a concrete class

};

class derived3: protected derived2{

public:

virtual void print2(){

cout << "In derived3\n";

}

};

int main(){

derived1 d1;

// derived2 d2; compiler complains:

// the following virtual functions are abstract:

// void base::print2()

derived3 d3;

d1.print();

// d3.print(); print() is inaccessible; ok if

public inheritance

d3.print2();

base * bptr1 = new derived1(); // ok

// base * bptr2 = new derived3();

// base is an inaccessible base of derived3

// derived2 *d2ptr = new derived3();

// derived2 is an inaccessible base of derived3

return 1;

}

derived1

In derived3

Case Study: Payroll System Using Polymorphism

 Enhanced CommissionEmployee-BasePlusCommissionEmployee
hierarchy using an abstract base class

 Abstract class Employee represents the general concept of an
employee

 Declares the “interface” to the hierarchy

 Each employee has a first name, last name and social security number

 Earnings calculated differently and objects printed differently
for each derived class

COMP2012H (Inheritance & polymorphism) 68

Creating Abstract Base Class Employee

 Provides various get and set functions

 Provides functions earnings()and print()

 Function earnings()depends on type of employee, so declared pure

virtual

 Not enough information in class Employee for a default implementation

 Function print()is virtual, but not pure virtual

 Default implementation provided in Employee

 Example maintains a vector of Employee pointers

 Polymorphically invokes proper earnings and print functions

COMP2012H (Inheritance & polymorphism) 69

Polymorphic Interface

COMP2012H (Inheritance & polymorphism) 70

Creating Concrete Derived Class

 SalariedEmployee inherits from Employee

 Includes a weekly salary

 Overridden earnings function incorporates weekly salary

 Overridden print function incorporates weekly salary

 Is a concrete class (implements all pure virtual functions in abstract base

class)

COMP2012H (Inheritance & polymorphism) 71

SalariedEmployee.h

 SalariedEmployee inherits from Employee, must override earnings
to be concrete

 Functions earnings and print in the base class will be
overridden (earnings defined for the first time)

COMP2012H (Inheritance & polymorphism) 72

class SalariedEmployee : public Employee {

public:

SalariedEmployee(const string &, const string &,

const string &, double = 0.0);

void setWeeklySalary(double); // set weekly salary

double getWeeklySalary() const; // return weekly salary

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const; // print SalariedEmployee object

private:

double weeklySalary; // salary per week

};

Creating Indirect Concrete Derived Class

 BasePlusCommissionEmployee inherits from CommissionEmployee

 Includes base salary

 Overridden earnings() function that incorporates base salary

 Overridden print() function that incorporates base salary

 Concrete class

 Not necessary to override earnings() to make it concrete, can inherit

implementation from CommissionEmployee

 Although we do override earnings() to incorporate base salary

COMP2012H (Inheritance & polymorphism) 73

Demonstrating Polymorphic Processing

 Create objects of types SalariedEmployee, HourlyEmployee,

CommissionEmployee and BasePlusCommissionEmployee

 Demonstrate manipulating objects with static binding

 Using name handles rather than pointers or references

 Compiler can identify each object’s type to determine which print and earnings

functions to call

 Demonstrate manipulating objects polymorphically

 Uses a vector of Employee pointers

 Invoke virtual functions using pointers and references

 One may also “cast” a derived object to its base class:

Base b = derived_obj;

COMP2012H (Inheritance & polymorphism) 74

payroll.cpp Sample Output (1/3)

COMP2012H (Inheritance & polymorphism) 75

Employees processed individually using static binding:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

payroll.cpp Sample Output (2/3)

COMP2012H (Inheritance & polymorphism) 76

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

payroll.cpp Sample Output (3/3)

COMP2012H (Inheritance & polymorphism) 77

Virtual function calls made off base-class references:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

Last Test: What is the Output? (1)

COMP2012H (Inheritance & polymorphism) 78

#include <iostream>

using namespace std;

class A {

public:

A() {}

void f() {cout << "A::f()" << endl;}

};

class B: public A {

public:

B() {}

void f() {cout << "B::f()" << endl;}

};

class C: public B {

public:

C() {}

void f() {cout << "C::f()" << endl;}

};

int main(){

A* z = new A;

z->f();

delete z;

A* x = new B;

x->f();

delete x;

A* y = new C;

y->f();

delete y;

return 0;

}

Output:

A::f()

A::f()

A::f()

Last Test: What if we add virtual to class A (and

everything else remains the same)?

COMP2012H (Inheritance & polymorphism) 79

class A {

public:

A() {}

virtual void f() {cout << "A::f()" << endl;}

};

Output:

A::f()

B::f()

C::f()

Virtual Destructors

 Nonvirtual destructors

 Destructors that are not declared with keyword virtual

 If a derived-class object is destroyed explicitly by applying the delete

operator to a base-class pointer to the object, the behavior is undefined

 This is because delete may be applied on a base-class object, instead

of the derived class

 virtual destructors

 Declared with keyword virtual

 That means that all derived-class destructors are virtual

 With that, if a derived-class object is destroyed explicitly by applying the

delete operator to a base-class pointer to the object, the appropriate

derived-class destructor is then called

 Appropriate base-class destructor(s) will execute afterwards

COMP2012H (Inheritance & polymorphism) 80

COMP2012H (Inheritance & polymorphism) 81

#include <iostream>

using namespace std;

class Base{

public:

virtual ~Base() { cout <<"Base Destroyed\n"; }

};

class Derived: public Base{

public:

virtual ~Derived() { cout << "Derived Destroyed\n"; }

};

int main(){

Derived d;

Base *bptr = new Derived();

delete bptr; // explicit delete call the destructor immediately

bptr = new Derived(); // the object will be deleted by garbage collection

// after program exits, and hence no destructor statement

return 0;

}

Derived Destroyed (for “delete bptr”)

Base Destroyed

Derived Destroyed (for object d going out of scope)

Base Destroyed

