H.O. #11
Fall 2015
Gary Chan

Inheritance and Polymorphism

N:14; D:12,13,25

Outline

» Inheritance and Obiject-Oriented Design

» Types of Inheritance

v

Building Derived Classes

Order of Construction and Destruction

v

» Multiple Inheritance

» Polymorphism
» Virtual Functions

» Abstract Class

COMP2012H (Inheritance & polymorphism) 2

Encapsulation

» Languages such as Pascal and C facilitated development of
structured programs

» Need for ability to extend and reuse software became evident

» This leads to object-oriented programming where objects are built on top
of other objects

» Data and basic operations for processing the data are
encapsulated into a single “entity”. This is made possible with
introduction of
» Modules
» Libraries

» Packages
» Implementation details are separated from class definition

» Client code must use only public operations

» Implementation may be changed without affecting client code

COMP2012H (Inheritance & polymorphism) 3

Encapsulation with Inheritance

» Some basic class features may be re-used in other classes

» A class can be derived from another class

» New class inherits data and function members from the original class

» Reusable for the new class

» Example: Consider the design of a new stack class which adds,
for example max () and min (), functions to a stack
» It is better to build “on top” of the proven stack by adding the functions
» The new class is inherited or derived from the stack class

» Obviously, this concept is different from creating a new class with a stack
as its member object, because a stack cannot contain a stack

COMP2012H (Inheritance & polymorphism) 4

Inheritance Features and Advantages

» Software reusability
» Often used in computer game design

» Create new class from existing class
» Seamlessly absorb existing class’s data and behaviors
» Enhance with new capabilities

» Derived class inherits from base class

» More specialized objects

» Behaviors inherited from base class
Can customize

» Additional behaviors

COMP2012H (Inheritance & polymorphism) 5

Inheritance Example
(Some Examples with Arrows Reversed)

COMP2012H (Inheritance & polymorphism) 6

Another Inheritance Example

COMP2012H (Inheritance & polymorphism) 7

Inheritance for Stack

» Adapter approach

» Build a new revised class RevStack max(}, min({) and other
new operations including

» Contains Stack object as its member revised max() and min()

» But ...

» Strictly speaking or conceptually, we cannot
say anymore a RevStack is a Stack,
because it contains a Stack

Stack myStack

push(), pop()...
myTop, ...
new data members...

» To access the functions of Stack, we need to
call: RevStk.myStack.push(); for a stack we RevStack class

prefer simply RevStk.push()

COMP2012H (Inheritance & polymorphism) 8

How about copy-and-paste?

» To modify the member functions, we may use copy-and-paste
approach

» Build a RevStack class (Revised Stack)
» Copy and paste those data members and function members in Stack

» Add the max () and min ()
» Problem

» RevStack and Stack are now separate and independent classes

» If we update some common member functions in Stack, we must change
RevStack versions

push(), pop() — max(), min() and other new operations

myTop, ... ~] gl push(), pop()
\)/‘

Stack class myTop, ...
new data members...

RevStack class

COMP2012H (Inheritance & polymorphism) 9

Inheritance

» Object-oriented approach
» Derive a new class, RevStack from Stack

» Stack is the base class or superclass

» RevStack is a derived class or subclass

» Derived class inherits all members of base class

» Modifying Stack class automatically updates Revstack class

push(), pop() . max(), min() and other new operations
myTop, ... new data members...
Stack class RevStack class

COMP2012H (Inheritance & polymorphism) 10

Relationships Between Classes

» Inheritance
» “is-a” relationship
» Derived class object can be treated as base class object

ehicle
» Example: Car is a vehicle

Vehicle properties/behaviors also apply to a car

» Composition (class in class)
» “has-a” relationship
» Obiject contains one or more objects of other classes as members

» Example: A car object has a steering wheel object

COMP2012H (Inheritance & polymorphism) 11

Class-in-Class (Object-in-Obiject) vs. Inheritance

» A class declares another class as its data member, hence creating an
object within another object

» Inheritance and class-in-class are two quite different things and
concepts in implementation and OOP.

» Inheritance has a "is-a" relationship between derived class and base
class, while class-in-class is a "has-a" relationship

» Generally, we can decide whether to use inheritance or class-in-class
by common sense. If we can find some common relationship between
two or more things, we should use inheritance.

» For example, Citizen and Student with Citizen as the base class. It makes no
sense to implement a Citizen class inside a Student class.

» In class-in-class, the inner class is a standalone object. Thus, the inner
class and the outer class do not share the powerful features in
inheritance (such as polymorphism and dynamic binding).

COMP2012H (Inheritance & polymorphism) 12

Relationships Between Inheritance Classes

» Base classes and derived classes
» Obiject of one class “is an” object of another class

» Example: Rectangle is a quadrilateral

Class Rectangle inherits from class Quadrilateral
00 Quadrilateral is the base class

O Rectangle is the derived class

» Base class typically represents larger set of objects than
derived classes

» Base class: Vehicle

Includes cars, trucks, boats, bicycles, etc.

» Derived class: Car

Smaller, more-specific subset of vehicles

COMP2012H (Inheritance & polymorphism) 13

Inheritance Concept

» When class C2 is derived from class CI1
» Class C2 is-a C1
» A HuntingLicense is-a License

» Use public inheritance only for “is-a” relationships

» When class D1 contains a class D2 object as an element
» D1 has-a D2

» A License has-a Date

» Inheritance should not be used for has-a relationships

License [€-—--—----1 Date

AN

Hunting

License
COMP2012H (Inheritance & polymorphism) 14

“Uses-a” Relationships Between Classes

» If class D1 needs information from class D2
» Then D1 uses-a D2

» An AutoInsurance class needs the name from a DriversLicense
class

» May be implemented as class-in-class

/

\

Car

License

Motorcycle

License

- < I
Auto-Insurance License
N \
Drivers Hunting
License License

/ N\

COMP2012H (Inheritance & polymorphism)

Deer

License

Pheasant
License

Class hierarchy

» Direct base class
» Inherited explicitly (one level up hierarchy)
» E.g., driver licenses and license
» Indirect base class
» Inherited two or more levels up hierarchy
» E.g., car license and license
» Single inheritance
» Inherits from one base class
» E.g., the above license example
» Multiple inheritance
» Inherits from multiple base classes
» Base classes possibly unrelated

» E.g., A “university student” is both a “hard-working person” and a “clever
person”

COMP2012H (Inheritance & polymorphism) 16

Declaration of a Derived Class

class DerivedClassName : kind BaseClassName

{
public:
// new data members
private: // or protected
// functions for derived class
};

» kind is one of
» public: direct access to public region
» private: does not allow direct access of the private region

» protected: allowing protected region to be directly accessed by derived
class and not other classes

COMP2012H (Inheritance & polymorphism) 17

Access Previledge of Derived Class

» Derived class inherits all members of base class

» And members of all its ancestor classes

» Always cannot access directly private members of base class

» Regarding public and protected members of the upstream class,
the kind of access a derived class has depends on kind of
inheritance

COMP2012H (Inheritance & polymorphism) 18

protected members

» In the base class, the private data members cannot be
accessed by its derived class

» In the base class, the protected data members is like private

members to other classes

» However, the derived class can access it directly as if it is a private
member

» An example of the use of protected keyword:
keyword protected.cpp

COMP2012H (Inheritance & polymorphism) 19

Protected Access

» Intermediate level of protection between public and
private
» For both data members and function members

» Woant the derived class to directly access members while forbid other
classes to access them directly

» protected members in the Base class are accessible to

» Base class members
» Base class friends
» Derived class members

» Derived class friends

» Derived-class members

» May use the public and protected members of base class

Simply use member names as its own members

COMP2012H (Inheritance & polymorphism) 20

Types of Inheritance and Region Transformation

» public inheritance (written as class derived: public base)

» Base class public members = derived class public members

Base class protected members = derived class protected members

4
» All classes can directly access the public members
4

Only the derived classes can directly access the protected members

» protected inheritance (written as class derived: protected base)

» Base class public and protected members = derived class protected members

» Classes in the inheritance hierarchy can still access the members (because they are protected members),
but not for other classes

» private inheritance (written as class derived: private base)

» Base class public and protected members = derived class private members

» Classes in the downstream inheritance hierarchy can no longer access the members (and neither can all the

other classes)

Base class

public
protected

public

COMP2012H (Inheritance & po

public
protected

\ 2

public
protected

protected

public
protected

private

Tl

protected
protected

A4

private
private

Derived class

21

Types of Inheritance

Base-class
member-

dCCEsE

specifier

pubTic

protected

private

pub1ic
inheritance

pubTicin derived class.

Can be accessed directly
Er rember functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
Er member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through pub1ic
of protected member
functions of the base class.

Type of inheritance

protected
inheritance

protectedin derived cass.

Can be accessed directhy
Er member functions and
friend functions.

protectedin derived cass.

Can be accessed directhy
Er member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
of protected member
functions of the base class.

and Member Access

private
inheritance

privatein derived class.

Can be accessed directly
by member functions and
friend functions.

privatein derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through publdic
of protected member
functions of the base cass.

COMP2012H (I

class derived:
protected base

class derived: private base

22

kind. cpp: lllustration of kinds of inheritance

» Note how the protected members are accessed in different
derived classes

» Note how the public and protected members of Base class are
changed by the kind of inheritance. Their accessibility is also
changed.

COMP2012H (Inheritance & polymorphism) 23

Public Inheritance

» Specify with:
class TwoDimensionalShape : public Shape
» Class TwoDimensionalShape inherits from class Shape

» Base class private members

» Not accessible directly (still inherited)

» Manipulated through inherited public member functions

» Base class public and protected members

» Inherited with original member access

» friend functions
» Not inherited

COMP2012H (Inheritance & polymorphism) 24

Building Derived Classes (for pul 1 ic Inheritance)

» Derived class constructors
» Use parent class's constructors to initialize base class members
» Is actually a call to the base class constructor
» The member-initializer list initializes member objects

» Need to explicitly invoke base-class constructors in the member initializer

» Accessing inherited data members
» If base class data public, derived class can access, even alter it
» If base class protected, can also alter it directly

» If base class data private, must use accessor functions

COMP2012H (Inheritance & polymorphism) 25

Building Derived Classes: Reusing Operations

» Derived class may extend or replace base class function of the
same name

» Possible to call the base class function with scope resolution
operator

void DerivedClass: :foo ()
{ // extending the base class function

BaseClass: :foo() ;

COMP2012H (Inheritance & polymorphism) 26

CommissionEmployee Example

» CommissionEmployee

» First name, last name, SSN (Social Security Number, i.e., ID), commission
rate, gross sale amount

» BasePlusCommissionEmployee

» CommissionEmployee: First name, last name, SSN, commission rate, gross
sale amount

» And also base salary
» Class BasePlusCommissionEmployee

» Much of the code is similar to CommissionEmployee
» Additions

private data member baseSalary

Methods setBaseSalary and getBaseSalary

COMP2012H (Inheritance & polymorphism) 27

CommissionEmployee Example:
Class BasePlusCommissionEmployee

» Derived from class CommissionEmployee
» Is a CommissionEmployee
» Inherits all public members

» Use base-class initializer syntax to initialize base-class data member
» Has data member baseSalary

» Base class implementation
» CommissionEmployeel.h, CommissionEmployeel.cpp

» Derived class implementation

» BasePlueCommissionEmployeel.h,
BasePlusCommissionEmployeel.cpp

» Compilation error because derived class cannot directly access
private members of CommissionEmployee class in
print () and earnings ()

COMP2012H (Inheritance & polymorphism) 28

Protected Access

» Use protected keyword to fix the problem

» CommissionEmployeeZ2.h,
CommissionkEmployee?2.cpp,
BasePlusCommissionEmployee?Z.h,
BasePlusCommissionEmployee2.cpp, test2.cpp

COMP2012H (Inheritance & polymorphism) 29

tester2.cpp Sample Output

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

COMP2012H (Inheritance & polymorphism) 30

Using Protected Data Members

» Advantages
» Derived class can modify values directly

» Avoid set/get method call overhead = Slight increase in performance

» Disadvantages

» No validity checking: Derived class can assign illegal value to protected
members
» Implementation becomes dependent on the base class
Derived class functions becomes very dependent on base class implementation

Using protected access, base class implementation changes may result in
derived class modifications, e.g., a change of the name in the protected region
of the base class may leads to many changes in the derived class

This leads to fragile (brittle) software

COMP2012H (Inheritance & polymorphism) 31

Best Software Engineering Practice

» Declare data members as private
» Provide public get and set functions

» Use get and set method to obtain and set values of data
members

» CommissionEmployee3.h,
CommissionEmployee3. cpp,
BasePlusCommissionEmployee3.h,
BasePlusCommissionEmployee3. cpp,
tester3.cpp

COMP2012H (Inheritance & polymorphism) 32

tester3.cpp Sample Output

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:
base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

COMP2012H (Inheritance & polymorphism) 33

Remarks

» Using a member function to access a data member’s value can
be slightly slower than accessing the data directly.
» But programmers should write code that adheres to proper software
engineering principles, and leave optimization issues to the compiler
» In function over-riding, failure to use the scope :: operator
prefixed with the name of the base class when referencing the
base class’s member function causes infinite recursion (as the
derived-class member function calls itself)
» E.g., The earnings () function in the base class is overridden by
double BasePlusCommissionEmployee::earnings () const

in BasePlusCommissionEmployee3.cpp

COMP2012H (Inheritance & polymorphism) 34

Base and Derived Functions: Function Over-riding,
not Over-loading /co-existing functions

» In the derived class, having a member function with the same name as a base
class function hides (or overrides) the base-class version of the function

» tisOKtocalld.print () if print were not defined at all in the
Derived class (prints out base)

class Base{
public:
void print () {cout << "base\n";}

}s

class Derived: public Base{
public:
void print(int 1){ cout << i << " Derived\n";}
void print(char ch){ cout << ch << " Derived\n";}
i

int main () {
Derived d;

d.print(2); // print 2 Derived
d.print('d'); // print d Derived
// d.print () ; Not O.K.: no matching function for Derived::print ()

return 0O;

COMP2012H (Inheritance & polymorphism) 35

Order of Construction

» Called at the initializer list, e.g., Derived:: Derived() :
Base () {..}
» The base class MUST be constructed in the initializer
» You MUST only call the immediate /direct base class constructor

» Chain of constructor calls to instantiate derived-class object:
» Derived-class constructor invokes base class constructor
Implicitly or explicitly
» Base-class constructor: Base of inheritance hierarchy
Like a recursive stack
» Initializing data members
Each base-class constructor initializes its data members that are inherited by derived class

» When a program creates a derived-class object:

1. The derived-class constructor immediately calls the base-class constructor
2. The base-class constructor’s body (i.e., within { }) executes

3. Then the derived class’s member initializer list execute

4. Finally the derived-class constructor’s body executes

» This process cascades up the hierarchy if the hierarchy contains more than
two levels in a recursive manner

COMP2012H (Inheritance & polymorphism) 36

Order of Destruction

» Chain of destructor calls to destroy derived-class object:
» Reverse order of constructor chain
» Destructor of derived-class is called first

» Destructor of the next base class up hierarchy next

Continue up hierarchy until final base reached

0 After final base-class destructor, object is removed from memory
» Base-class constructors, des’rruc’rors, dssignmen’r operators
» Not inherited by derived classes

» Example on order of construction and destruction

» CommissionEmployeed.h, CommissionEmployeed.cpp,
BasePlusCommissionEmployee4d.h,
BasePlusCommissionEmployeed.cpp, order.cpp

COMP2012H (Inheritance & polymorphism) 37

order.cpp Sample Output (1/4)

CommissionEmployee constructor:
commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00

commission rate: 0.04 CommissionEmployee constructor
called for object in block;

CommissionEmployee destructor: destructor called immediately as

commission employee: Bob Lewis execution leaves scope

social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

CommissionEmployee constructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555

gross sales: 2000.00
commission rate: 0.06 constructor executes first when

instantiating derived-class
BasePlusCommissionEmployee object

Base-class CommissionEmployee

COMP2012H (Inheritance & polymorphism) 38

order.cpp Sample Output (2/4)

BasePlusCommissionEmployee constructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555

gross sales: 2000.00 . L.
commission rate: 0.06 Derived-class BasePlusCommissionEmployee

base salary: 800.00 constructor body executes after base-class
CommissionEmployee’s constructor finishes execution

CommissionEmployee constructor:
commission employee: Mark Sands
social security number: 888-88-8888
gross sales: 8000.00
commission rate: 0.15

Base-class CommissionEmployee constructor
executes first when instantiating derived-class
BasePlusCommissionEmployee object

COMP2012H (Inheritance & polymorphism) 39

order.cpp Sample Output (3/4)

BasePlusCommissionEmployee constructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15
base salary: 2000.00 constructor body executes after base-class

Derived-class BasePlusCommissionEmployee

CommissionEmployee’s constructor finishes execution

BasePlusCommissionEmployee destructor:
base-salaried commission employee: Mark Sands
social security number: 888-88-8888

gross sales: 8000.00
commission rate: 0.15
base salary: 2000.00

Destructors for
BasePlusCommissionEmployee object

CommissionEmployee destructor: called in reverse order of constructors
commission employee: Mark Sands

social security number: 888-88-8888

gross sales: 8000.00

commission rate: 0.15

COMP2012H (Inheritance & polymorphism) 40

order.cpp Sample Output (4/4)

BasePlusCommissionEmployee destructor:
base-salaried commission employee: Lisa Jones
social security number: 555-55-5555

gross sales: 2000.00

commission rate: 0.06

base salary: 800.00

CommissionEmployee destructor:
commission employee: Lisa Jones
social security number: 555-55-5555
gross sales: 2000.00

commission rate: 0.06

Destructors for BasePlusCommissionEmployee object
called in reverse order of constructors

COMP2012H (Inheritance & polymorphism) 41

Multiple Inheritence

» When a derived class inherits members from two or more base
classes

» Provide comma-separated list of base classes after the colon following the
derived class name

» Can cause ambiguity problems
» Should be used only by experienced programmers
» Newer languages do not allow multiple inheritance

» A common issue occurs if more than one base class contains a member with
the same name

Solved by using the binary scope resolution operator

COMP2012H (Inheritance & polymorphism) 42

Multiple Inheritence (Cont.)

» Should be used when an “is a” relationship exists between a
new type and two or more existing types

» i.e.type A “is a” type B and type A “is a” type C

» Can introduce complexity into a system

» Great care is required in the design of a system to use multiple
inheritance properly

» Should not be used when single inheritance and /or composition will do the
job
» Example:

» Basel.h, BaseZ.h, Derived.h, Derived.cpp,
multiple.cpp

COMP2012H (Inheritance & polymorphism) 43

multiple.cpp Sample Output

» Note the use of base-class pointer pointing to a derived-class objects

» Invoking the member function of the derived object

Object basel contains integer 10
Object base2 contains character 2
Object derived contains:
Integer: 7
Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
Integer: 7
Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
baselPtr->getData () yields 7
base2Ptr->getData() yields A

COMP2012H (Inheritance & polymorphism) 44

Size of the Base-class and Derived-class Objects

» The size of a derived object is not the sum of the base-class object and derived-class
members

» Probably due to memory alignment and internal representation of derived-class object

» The size of the derived-class object that a base-class handle points to is actually that of

the base-class object. . .
int main () {
#include <iostream> // for base object 4
using namespace std; cout << sizeof (int) << endl; 4
cout << sizeof (float) << endl;
class base/{ cout << sizeof (base) << endl << endl; 8
public:
int 1i; // 4 byes // for derived object
float £; // 4 bytes cout << sizeof (double) << endl; 8
}s cout << sizeof (double *) << endl; 8
cout << sizeof (char [100]) << endl;
class derived: public base({ cout << sizeof (derived) << endl << endl; 100
public: 128
double d; // 8 bytes base *bptr = new derived;
double *dptr; // 8 bytes cout << sizeof (*bptr) << endl;
char c[100]; // 100 bytes 8
i derived *dptr = new derived;
cout << sizeof (*dptr) << endl; 128
return 1;
}

COMP2012H (Inheritance & polymorphism) 45

Software Engineering: Customizing Existing Software
with Inheritance

» Inheriting from existing classes
Can include additional members
Can redefine base-class members

No need to have direct access to base class’s source code
0 Only need to link to object code

» Good for those independent software vendors (ISVs)

Develop proprietary code for sale/license

[0 Available in object-code format

Users derive new classes

0 Without accessing ISV proprietary source code

COMP2012H (Inheritance & polymorphism) 46

Polymorphism

Polymorphism and Dynamic Binding

» “Polymorphic” behavior in functions and classes
» Function name can be overloaded
» Function template is a pattern for multiple functions

» Class template is a pattern for multiple classes

» In these cases the compiler determines which version of the
function or class to use during the compilation time

» Called static or early binding

» Sometimes we don’t know the kind of object until run time
» Dynamic binding

» Usually involves pointers to some objects which are not known beforehand

COMP2012H (Inheritance & polymorphism) 48

Polymorphism with inheritance hierarchies

» “Program in the general” vs. “program in the specific”

» Process objects of classes that are part of the same hierarchy
as if they are objects of a single class
» E.g., vehicles €& 4-wheel vehicle € passenger car € sport car

» Obijects can be created in any part of the chain of hierarchy

» Each object performs the correct tasks for that object’s type

» Different actions occur depending on the type of object

» New classes can be added with little or no modification to
existing code

COMP2012H (Inheritance & polymorphism) 49

Using Handles

» A handle is a variable whose value is the address of that object
» It is a pointer variable (address of the object)

» Refers to the object indirectly

» Handle for base class object can also refer to any derived class
object (SalariedEmployee is derived from Employee)
Employee * eptr; // handle
eptr = new Employee(); or
eptr = new SaleriedEmployee(); // o.k.!

» Then eptr->display (cout) ; will always work

» It always calls Employee’s member function display if it is implemented
as an actual function, even if it is pointing to SalariedEmployee object

COMP2012H (Inheritance & polymorphism) 50

Invoking Functions

» Cannot aim derived-class pointer to a base-class object

» Aim base-class pointer at base-class object
» Invoke base-class functionality

» Aim derived-class pointer at derived-class object
» Invoke derived-class functionality

» Aim base-class pointer at derived-class object
» Can only invoke base-class functionalities
» Because derived-class object is an (inherited) object of base class

» Invoked functionality depends on the handle type used to invoke the
function (which is base or derived object).

» Therefore, if the handle is base pointer, even if it points to a derived-class
object, it invokes the functionality of base class

» CommissionEmployeel.h,
CommissionEmployeel.cpp,
BasePlusCommissionEmployeel.h,
BasePlusCommissionEmployeel.cpp, testerla.cpp

COMP2012H (Inheritance & polymorphism) 51

tester1a.cpp Sample Output (1/2)

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

COMP2012H (Inheritance & polymorphism) 52

tester1a.cpp Sample Output (2/2)

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00

commission rate: 0.04

COMP2012H (Inheritance & polymorphism) 53

Invoking Functions

» The pointer must be a base-class pointer, pointing to a derived-
class object

» All the base class functions of the derived object can be called. This is not
a problem because derived class inherits all the functions from the base
class.

» Because it is a base class pointer, cannot access the members of derived-
class even if the base-class pointer is pointing to the derived-class object
» Aim a derived-class pointer at a base-class object is an error
» C++ compiler generates error
» This is because

A derived-class pointer is supposed to be able to access all the derived-class
member functions that it points to

If the pointer is pointing to a base class, some of these derived-class functions
may not even be available at the base class

COMP2012H (Inheritance & polymorphism) 54

Summary of the Allowed Assignments

» Four ways to aim base-class and derived-class pointers at base-
class and derived-class objects

_ Base object Derived object

Base pointer Straightforward Is safe, but can be used to invoke only
member functions that base-class declares;
Can achieve polymorphism with virtual
function

Derived pointer Compilation error Straightforward

COMP2012H (Inheritance & polymorphism) 55

Polymorphism and Dynamic Binding

» So far, we have seen how a base-class handle can bind dynamically
to a derived-class object

» But the functions that can be used are still of the base-class
» We want to call the functions of the derived class

» Example: Animal hierarchy
» Animal base class — every derived class has function move
» Different animal objects maintained as a vector of Animal pointers
» Program issues same message (move) to each animal generically
» Proper function gets called
A Fish will move by swimming
A Frog will move by jumping
A Bird will move by flying
» Another example: Computer games

» Different characters, if hit, may have their scores updated differently (using,
e.g, an update score () function)

COMP2012H (Inheritance & polymorphism) 56

Virtual Functions and Dynamic Binding

» Which version is called must be deferred to run time

» This is dynamic or late binding

» Accomplished with virtual functions
» Each object contains some virtual function
» Compiler creates a virtual function table (vtbl) for each object

» Table of pointers to actual codes of the required function (e.g., move),
which is to the actual function implementation of the derived class

» Make it possible to invoke the object type’s functionality (the actual
derived class object), rather than invoke the handle type’s (i.e., the type of
the pointer) functionality

» Crucial to implementing polymorphic behavior

COMP2012H (Inheritance & polymorphism) 57

Virtual Functions

» Normally handle determines which class’s functionality to invoke

» If it is of base-class pointer, base member functions will be invoked even
though the object that it points to is a derived class

» With virtual functions

» Type of the object being pointed to, not type of the handle, determines which
version of a virtual function to invoke

» Allows program to dynamically (at runtime rather than compile time)
determine which function to use

» Dynamic binding or late binding

» Declared by preceding the function’s prototype with the keyword
virtual in base class

» Derived classes override function as appropriate
» Replacing the function

» A call to the function will use the definition of the derived class

COMP2012H (Inheritance & polymorphism) 58

Virtual Functions (Cont.)

Once declared virtual, a function remains virtual all the way down the
hierarchy

» Even so, as a good software practice, you should put virtual to all the functions
you want to make virtual

Static binding

» When calling a virtual function using specific object with dot operator, function
invocation is resolved at compile time

» E.g.,obj.virtual function(); // known obj type at compilation
Dynamic binding

» Dynamic binding occurs only for pointer and reference handles when the objects that
these handles point to are not known at compile time

CommissionEmployee2.h, CommissionEmployee2.cpp,
BasePlusCommissionEmployee2.h, BasePlusCommissionEmployee2.cpp,
test2er.cpp

» Note the use of virtual keyword in both base and derived classes

COMP2012H (Inheritance & polymorphism) 59

tester2.cpp Sample Output (1/3)

Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

COMP2012H (Inheritance & polymorphism) 60

tester2.cpp Sample Output (2/3)

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Calling wvirtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

COMP2012H (Inheritance & polymorphism) 61

tester2.cpp Sample Output (3/3)

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

COMP2012H (Inheritance & polymorphism) 62

Determining the Type of Object Using
dyanmic cast

» dynamic cast can be used only with pointers and references to base class
objects. Its purpose is to ensure that the result of the type conversion is a valid
complete object of the requested class.

» Return NULL is not so

#include <iostream> // check whether the pointer can be successfully cast

#include <typeinfo> is derived = dynamic cast< derived * > (bptr[0 1);
#include <string> - -

if(is_derived)

using namespace std; cout << "bptr[0] is a derived object.\n";
else

class base(cout << "bptr[0] is a base object.\n";

public:

virtual void print(){ cout << "Base object\n";} is derived = dynamic cast< derived * > (bptr[1 1);
}i — _

if(is_derived)

‘ // derived class

public: is derived -> print(); // call derived functions

class derived: public base/{

virtual void print(){ cout << "Derived object\n"; } else
bi // is _derived is NULL; base class
bptr[1 1 -> print(); // call base functions

int main () {

return 0;
base * bptr[2]; }

// check whether it points to a derived ob]

derived * is derived;

bptr[0] = new base(); bptr[0] is a base object.

bptr[1] new derived() ;
Derived object
COMP2012H (Inheritance & polymorphism) 63

Abstract and Concrete Classes

» Classes from which the programmer never intends to instantiate
any objects

» Incomplete—derived classes must define the “missing pieces” or “missing
parts”

» Too generic to define any real objects out of it

» Normally used as base classes, called abstract base classes
» Provides an appropriate base class from which other classes can inherit

» Classes used to instantiate objects are called concrete classes

Must provide implementation for every member function they define

COMP2012H (Inheritance & polymorphism) 64

Pure Virtual Functions

» A class is made abstract by declaring one or more of its virtual

functions to be “pure”
» No object can be created out of it

» Placing 0” in its declaration

» Example: virtual void draw() const = 0;

0” is known as a pure specifier

» Do not provide implementations

» Every concrete derived class must override all base-class pure virtual
functions with concrete implementations

» If not overridden, derived-class will also be abstract

» Used when it does not make sense for base class to have an
implementation of a function, but the programmer wants all
concrete derived classes to implement the function

COMP2012H (Inheritance & polymorphism) 65

Abstract Classes and Pure Virtual Functions

» We can use the abstract base class to declare pointers and
references

» Can point to objects of any concrete class derived from the abstract class

» Programs typically use such pointers and references to manipulate
derived-class objects polymorphically

» Polymorphism is particularly effective for implementing software
systems

» E.g., reading or writing data from and to different devices of the same
base class

» Iterator class (using base class pointer)

» Can traverse all the objects in a container

COMP2012H (Inheritance & polymorphism) 66

#include <iostream>
using namespace std;

class base({

public:
virtual void print() = 0;
virtual void print2 () = 0;

b

class derivedl: public base{
public:
virtual void print () {
cout << "derivedl\n";
}
virtual void print2(){} // must have this line,
// otherwise compiler complains in main ()

b

class derived2: public base{
public:
virtual void print () {
cout << "in derived2\n";
}
// do not need to define print2() here as
// derived2 is not a concrete class

}s

class derived3: protected derived?2{
public:
virtual void print2 () {
cout << "In derived3\n";

int main () {
derivedl dl;
// derived2 d2; compiler complains:
// the following virtual functions are abstract:
// void base::print2 ()
derived3 d3;

dl.print () ;

// d3.print () ;
public inheritance

d3.print2();

print () is inaccessible; ok if

base * bptrl = new derivedl (); // ok
// base * bptr2 = new derived3();
// base is an inaccessible base of derived3

// derived2 *d2ptr = new derived3();
// derived2 1is an inaccessible base of derived3

return 1;

derivedl
In derived3

COMP2012H (Inheritance & polymorphism)

Case Study: Payroll System Using Polymorphism

» Enhanced CommissionEmployee-BasePlusCommissionEmployee
hierarchy using an abstract base class

» Abstract class Employee represents the general concept of an
employee
» Declares the “interface” to the hierarchy
» Each employee has a first name, last name and social security number

» Earnings calculated differently and objects printed differently
for each derived class

Employee Emplovee class is abstract;
/ Zﬁ \ displaved initalics
Salaried Employee CommissionEmployee HourlyEm ployee
COMP2012F BasePlusCommissionEmployee 68

Creating Abstract Base Class Employee

» Provides various get and set functions

» Provides functions earnings () and print ()

» Function earnings () depends on type of employee, so declared pure
virtual

Not enough information in class Employee for a default implementation
» Function print () is virtual, but not pure virtual
Default implementation provided in Employee
» Example maintains a vector of Employee pointers

» Polymorphically invokes proper earnings and print functions

COMP2012H (Inheritance & polymorphism) 69

Polymorphic Interface

Barnings
Emploves =0
salaried-
Sioleee weell ysalary

If hours <= 40
wage ¥ hours

If hours = 40
C 40 % wage J +
i [hours - 40 3
owage 7 O1.5 3

HourTy-
Emploves

Comml ssion- commi ssionRate #

Employee grosshales
EasePlus- basesalary +

Comml ssion- i commissionfate ¥
Employee grosssales

COMP2012H (Inheritance & polymorphism)

firstame lastNams
social security number: 55N

salaried employee: firsstName lastMName
social security number: 55N
weekly salary: weeklysalany

hourly emploves: fistName lostiNaome
social security number: 55N
hourly wage: wage; hours worked: hours

commission employee: firstNome lastMName
social security number: S5

gross sales: grossSules;

commission rate: commissionfats

baze salaried commission employee:
firstNams lastMame

social security number: 55N

gross sales: grossSules;

commission rate: cammissionfats;

base salary: basaSolany

70

Creating Concrete Derived Class

» SalariedEmployee inherits from Employee

» Includes a weekly salary
Overridden earnings function incorporates weekly salary
Overridden print function incorporates weekly salary

» Is a concrete class (implements all pure virtual functions in abstract base
class)

COMP2012H (Inheritance & polymorphism) 71

SalariedEmployee.h

class SalariedEmployee : public Employee {
public:
SalariedEmployee(const string &, const string &,
const string &, double = 0.0);
void setWeeklySalary(double); // set weekly salary
double getWeeklySalary() const; // return weekly salary

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const; // print SalariedEmployee object
private:

double weeklySalary; // salary per week

};

» SalariedEmployee inherits from Employee, must override earnings
to be concrete

» Functions earnings and print in the base class will be
overridden (earnings defined for the first time)

COMP2012H (Inheritance & polymorphism) 72

Creating Indirect Concrete Derived Class

» BasePlusCommissionEmployee inherits from CommissionEmployee
» Includes base salary
Overridden earnings () function that incorporates base salary
Overridden print () function that incorporates base salary

» Concrete class

Not necessary to override earnings () to make it concrete, can inherit
implementation from CommissionEmployee

Although we do override earnings () to incorporate base salary

COMP2012H (Inheritance & polymorphism) 73

Demonstrating Polymorphic Processing

» Create objects of types SalariedEmployee, HourlyEmployee,
CommissionEmployee and BasePlusCommissionEmployee
» Demonstrate manipulating objects with static binding
Using name handles rather than pointers or references

Compiler can identify each object’s type to determine which print and earnings
functions to call

» Demonstrate manipulating objects polymorphically
Uses a vector of Employee pointers

Invoke virtual functions using pointers and references
» One may also “cast” a derived object to its base class:

Base b = derived obj;

COMP2012H (Inheritance & polymorphism) 74

payroll.cpp Sample Output (1/3)

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

COMP2012H (Inheritance & polymorphism) 75

payroll.cpp Sample Output (2/3)

Employees processed polymorphically using dynamic binding:
Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

COMP2012H (Inheritance & polymorphism) 76

payroll.cpp Sample Output (3/3)

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

COMP2012H (Inheritance & polymorphism) 77

Last Test: What is the Outpute (1)

#include <iostream>
using namespace std;

class A {
public:
A() {}

void £() {cout << "A::f()"

};

class B: public A {
public:
B() {}

void f£() {cout << "B

};

class C: public B {
public:
c() {1}

void £() {cout << "C

};

tE()"

E()"

<< endl;}

<< endl;}

<< endl;}

int main () {
A* z = new A;
z->£();
delete z;

A* x = new B;
x->£();
delete x;

A* y = new C;

y->£();
delete y;
return O;

COMP2012H (Inheritance & polymorphism)

Output:
A1)
A1)
A1)

78

Last Test: What if we add virtual to class A (and
everything else remains the same)?

class A {
public:

A() {}

virtual void f£() {cout << "A::f()" << endl;}
}i

Output:
A::f()
B::f()
C::f()

COMP2012H (Inheritance & polymorphism) 79

Virtual Destructors

» Nonvirtual destructors

» Destructors that are not declared with keyword virtual

» If a derived-class object is destroyed explicitly by applying the delete
operator to a base-class pointer to the object, the behavior is undefined

» This is because delete may be applied on a base-class object, instead
of the derived class
» virtual destructors
» Declared with keyword virtual
That means that all derived-class destructors are virtual

» With that, if a derived-class object is destroyed explicitly by applying the
delete operator to a base-class pointer to the object, the appropriate
derived-class destructor is then called

» Appropriate base-class destructor(s) will execute afterwards

COMP2012H (Inheritance & polymorphism) 80

#include <iostream>
using namespace std;

class Base({
public:
virtual ~Base () { cout <<"Base Destroyed\n"; }

b

class Derived: public Base{
public:
virtual ~Derived() { cout << "Derived Destroyed\n"; }

b

int main () {
Derived d;
Base *bptr = new Derived();
delete bptr; // explicit delete > call the destructor immediately
bptr = new Derived(); // the object will be deleted by garbage collection
// after program exits, and hence no destructor statement

return 0;

Derived Destroyed (for “delete bptr’)

Base Destroyed

Derived Destroyed (for object d going out of scope)
Base Destroyed

COMP2012H (Inheritance & polymorphism) 81

