
C++ string Page 1

C++ Strings

Constructors

Syntax:

 string();

 string(size_type length, char ch);

 string(const char *str);

 string(const char *str, size_type length);

 string(string &str, size_type index, size_type length);

 string(input_iterator start, input_iterator end);

The string constructors create a new string containing:

 length copies of ch,

 a duplicate of str (optionally up to length characters long),

 a substring of str starting at index and length characters long, or

 elements from start to end.

For example,

 string str1(5, 'c');

 string str2("Now is the time...");

 string str3(str2, 11, 4);

 cout << str1 << endl;

 cout << str2 << endl;

 cout << str3 << endl;

displays

 ccccc

 Now is the time...

 time

C++ string Page 2

compare

Syntax:

 int compare(const basic_string &str);

 int compare(const char *str);

 int compare(size_type index, size_type length, const basic_string &str);

 int compare(size_type index, size_type length, const basic_string &str, size_type

index2,

 size_type length2);

 int compare(size_type index, size_type length, const char *str, size_type

length2);

The compare() function either compares str to the current string in a variety of ways, returning

Return Value Case

less than zero this < str

zero this == str

greater than zero this > str

The various functions either:

 compare str to the current string,

 compare str to a substring of the current string,starting at index for length characters,

 compare a substring of str to a substring of the current string, where index2 and length2 refer to str

and index and length refer to the current string,

 or compare a substring of str to a substring of the current string, where the substring of str begins at

zero and is length2 characters long, and the substring of the current string begins at index and is

length characters long.

data

Syntax:

 const char *data();

The function data() returns a pointer to the first character in the current string.

empty

Syntax:

 bool empty();

The empty() function returns true if the current string is empty, and false otherwise.

C++ string Page 3

erase

Syntax:

 iterator erase(iterator pos);

 iterator erase(iterator start, iterator end);

 basic_string &erase(size_type index = 0, size_type num = npos);

The erase() function either:

 removes the character pointed to by pos, returning an iterator to the next character,

 removes the characters between start and end, returning an iterator to the character after the last

character removed,

 or removes num characters from the current string, starting at index, and returns *this.

The parameters index and num have default values, which means that erase() can be called with just index to

erase all characters after index or with no arguments to erase all characters. For example:

 string s("So, you like donuts, eh? Well, have all the donuts in the world!");

 cout << "The original string is '" << s << "'" << endl;

 s.erase(50, 14);

 cout << "Now the string is '" << s << "'" << endl;

 s.erase(24);

 cout << "Now the string is '" << s << "'" << endl;

 s.erase();

 cout << "Now the string is '" << s << "'" << endl;

will display

 The original string is 'So, you like donuts, eh? Well, have all the donuts in the

world!'

 Now the string is 'So, you like donuts, eh? Well, have all the donuts'

 Now the string is 'So, you like donuts, eh?'

 Now the string is ''

C++ string Page 4

find

Syntax:

 size_type find(const basic_string &str, size_type index);

 size_type find(const char *str, size_type index);

 size_type find(const char *str, size_type index, size_type length);

 size_type find(char ch, size_type index);

The function find() either:

 returns the first occurrence of str within the current string, starting at index, string::npos if nothing

is found,

 returns the first occurrence of str within the current string and within length characters, starting at

index, string::npos if nothing is found,

 or returns the index of the first occurrence ch within the current string, starting at index, string::npos

if nothing is found.

For example,

 string str1("Alpha Beta Gamma Delta");

 unsigned int loc = str1.find("Omega", 0);

 if(loc != string::npos)

 cout << "Found Omega at " << loc << endl;

 else

 cout << "Didn't find Omega" << endl;

find_first_of

Syntax:

 size_type find_first_of(const basic_string &str, size_type index = 0);

 size_type find_first_of(const char *str, size_type index = 0);

 size_type find_first_of(const char *str, size_type index, size_type num);

 size_type find_first_of(char ch, size_type index = 0);

The find_first_of() function either:

 returns the index of the first character within the current string that matches any character in str,

beginning the search at index, string::npos if nothing is found,

 returns the index of the first character within the current string that matches any character in str,

beginning the search at index and searching at most num characters, string::npos if nothing is found,

 or returns the index of the first occurrence of ch in the current string, starting the search at index,

string::npos if nothing is found.

C++ string Page 5

find_first_not_of

Syntax:

 size_type find_first_not_of(const basic_string &str, size_type index = 0);

 size_type find_first_not_of(const char *str, size_type index = 0);

 size_type find_first_not_of(const char *str, size_type index, size_type num);

 size_type find_first_not_of(char ch, size_type index = 0);

The find_first_not_of() function either:

 returns the index of the first character within the current string that does not match any character in

str, beginning the search at index, string::npos if nothing is found,

 returns the index of the first character within the current string that does not match any character in

str, beginning the search at index and searching at most num characters, string::npos if nothing is

found,

 or returns the index of the first occurrence of a character that does not match ch in the current string,

starting the search at index, string::npos if nothing is found.

find_last_of

Syntax:

 size_type find_last_of(const basic_string &str, size_type index = npos);

 size_type find_last_of(const char *str, size_type index = npos);

 size_type find_last_of(const char *str, size_type index, size_type num);

 size_type find_last_of(char ch, size_type index = npos);

The find_last_of() function either:

 returns the index of the first character within the current string that matches any character in str,

doing a reverse search from index, string::npos if nothing is found,

 returns the index of the first character within the current string that matches any character in str,

doing a reverse search from index and searching at most num characters, string::npos if nothing is

found,

 or returns the index of the first occurrence of ch in the current string, doing a reverse search from

index, string::npos if nothing is found.

C++ string Page 6

find_last_not_of

Syntax:

 size_type find_last_not_of(const basic_string &str, size_type index = npos);

 size_type find_last_not_of(const char *str, size_type index = npos);

 size_type find_last_not_of(const char *str, size_type index, size_type num);

 size_type find_last_not_of(char ch, size_type index = npos);

The find_last_not_of() function either:

 returns the index of the first character within the current string that does not match any character in

str, doing a reverse search from index, string::npos if nothing is found,

 returns the index of the first character within the current string that does not match any character in

str, doing a reverse search from index and searching at most num characters, string::npos if nothing

is found,

 or returns the index of the first occurrence of a character that does not match ch in the current string,

doing a reverse search from index, string::npos if nothing is found.

insert

Syntax:

 iterator insert(iterator i, const char &ch);

 basic_string &insert(size_type index, const basic_string &str);

 basic_string &insert(size_type index, const char *str);

 basic_string &insert(size_type index1, const basic_string &str, size_type index2,

size_type num);

 basic_string &insert(size_type index, const char *str, size_type num);

 basic_string &insert(size_type index, size_type num, char ch);

 void insert(iterator i, size_type num, const char &ch);

 void insert(iterator i, iterator start, iterator end);

The very multi-purpose insert() function either:

 inserts ch before the character denoted by i,

 inserts str into the current string, at location index,

 inserts a substring of str (starting at index2 and num characters long) into the current string, at

location index1,

 inserts num characters of str into the current string, at location index,

 inserts num copies of ch into the current string, at location index,

 inserts num copies of ch into the current string, before the character denoted by i,

 or inserts the characters denoted by start and end into the current string, before the character

specified by i.

C++ string Page 7

length

Syntax:

 size_type length();

The function length() returns the length of the current string. This number should be the same as the one

returned from size().

substr

Syntax:

 basic_string substr(size_type index, size_type num = npos);

The substr() function returns a substring of the current string, starting at index, and num characters long. If

num is omitted, it will default to string::npos, and the substr() function will simply return the remainder of

the string starting at index. For example:

 string s("What we have here is a failure to communicate");

 string sub = s.substr(21);

 cout << "The original string is " << s << endl;

 cout << "The substring is " << sub << endl;

displays

 The original string is What we have here is a failure to communicate

 The substring is a failure to communicate

cppstring_details.html#size#size

