C++ deque

Constructor

Syntax:

explicit deque (const Allocator& = Allocator());

explicit deque (size type n, const T& value= T (), const Allocator& = Allocator());

template <class InputIterator>
deque (InputIterator first, Inputlterator last, const Allocator& = Allocator ());

deque (const deque<T,Allocator>& x);

Default constructor: constructs an empty deque container, with no content and a size of zero.

Repetitive sequence constructor: Initializes the container with its content set to a repetition, n times, of
copies of value.

Iteration constructor: Iterates between first and last, setting a copy of each of the sequence of elements as
the content of the container.

Copy constructor: The deque container is initialized to have the same contents (copies) and properties as
deque container x.

For example,

deque<int> first; // empty deque of ints
deque<int> second (4,100); // four ints with value 100
deque<int> third (second.begin(),second.end()); // iterating through second

deque<int> fourth (third); // a copy of third

begin
Syntax:

iterator begin ();

const iterator begin () const;

Returns an iterator referring to the first element in the container.

Notice that unlike member deque::front, which returns a reference to the first element, this function
returns a random access iterator.

C++ deque Page 1

end

Syntax:
iterator end ();

const iterator end () const;

Returns an iterator referring to the past-the-end element in the deque container.

Notice that, unlike member deque::back, which returns a reference to the element preceding this one, this

function returns a random access iterator.

size

Syntax:

size type size() const;

Returns the number of elements in the deque container.

resize

Syntax:

void resize (size type sz, T c = T());

Resizes the container to contain sz elements.

If sz is smaller than the current container size, the content is reduced to its first sz elements, the rest being

dropped.

If sz is greater than the current container size, the content is expanded by inserting at the end as many

copies of c as needed to reach a size of sz elements.

Notice that this function changes the actual content of the container by inserting or erasing elements from

it.

C++ deque

Page 2

empty

Syntax:
bool empty () const;

Returns whether the deque container is empty, i.e. whether its size is 0.

operator(]
Syntax:
reference operator[] (size type n);
const reference operator[] (size type n) const;

Returns a reference to the element at position n in the deque container.

For example,
for (i=0; i<sz; i++)
cout << " " << mydeque[i];
front
Syntax:

reference front ();

const reference front () const;

Returns a reference to the first element in the deque container.

back

Syntax:
reference back ();

const reference back () const;

Returns a reference to the last element in the container.

C++ deque Page 3

assign

Syntax:
template <class Inputlterator>

void assign (InputlIterator first, Inputlterator last);
void assign (size type n, const T& u);

Assigns new content to the container, dropping all the elements contained in it before the call and replacing
them by those specified by the parameters:

In the first version (with iterators), the new contents are a copy of the elements contained in the sequence
between first and last (in the range [first,last)).

In the second version, the new content is the repetition n times of copies of element u.
For example,

deque<int> first;

deque<int> second;

deque<int> third;

first.assign (7,100); // a repetition 7 times of value 100

deque<int>::iterator it;

it=first.begin()+1;

second.assign (it,first.end()-1); // the 5 central values of first
int myints[] = {1776,7,4};
third.assign (myints,myints+3); // assigning from array.
cout << "Size of first: " << int (first.size()) << endl;
cout << "Size of second: " << int (second.size()) << endl;
cout << "Size of third: " << int (third.size()) << endl;
Output:

Size of first: 7
Size of second: 5

Size of third: 3

C++ deque Page 4

push_back

Syntax:

void push back (const T& x);

Adds a new element at the end of the deque container, after its current last element. The content of this
new element is initialized to a copy of x.

For example,
deque<int> mydeque;

int myint;
cout << "Please enter some integers (enter 0 to end) :\n";

do {
cin >> myint;
mydeque.push back (myint);
} while (myint);

push_front

Syntax:

void push front (const T& x);

Inserts a new element at the beginning of the deque container, right before its current first element. The
content of this new element is initialized to a copy of x.

For example,
deque<int> mydeque (2,100); // two ints with a value of 100
mydeque.push front (200);
mydeque.push front (300);

cout << "mydeque contains:";
for (unsigned 1i=0; i<mydeque.size(); ++1i)

cout << " " << mydequel[il];

Output:
300 200 100 100

C++ deque Page 5

pop_back

Syntax:
void pop back ();

Removes the last element in the deque container, effectively reducing the container size by one.

For example,
deque<int> mydeque;
int sum (0);
mydeque.push back (10);
mydeque.push back (20);
mydeque.push back (30);

while (!mydeque.empty())
{
sumt+=mydeque.back () ;

mydeque.pop back();

cout << "The elements of mydeque summed " << sum << endl;

Output:

The elements of mydeque summed 60

C++ deque Page 6

pop_front

Syntax:
void pop front ();

Removes the first element in the deque container, effectively reducing the deque size by one.

For example,
deque<int> mydeque;
int sum (0);
mydeque.push back (100);
mydeque.push back (200);
mydeque.push back (300);

cout << "Popping out the elements in mydeque:";
while (!mydeque.empty())
{

cout << " " << mydeque.front();

mydeque.pop_ front();

cout << "\nFinal size of mydeque is " << int (mydeque.size()) << endl;

Output:
Popping out the elements in mydeque: 100 200 300

Final size of mydeque is 0

C++ deque Page 7

insert

Syntax:

iterator
void

template

void

insert
insert
<class

insert

(iterator position,

(iterator position,

InputIterator>

(iterator position,

const T& x);

size type n, const T& x);

InputIterator first, Inputlterator last

) ;

The deque container is extended by inserting new elements before the element at the specified position.

For exampl

€,

deque<int> mydeque;

deque<int>::iterator it;

// set some initial values:

for (int i=1; i<6; i++) mydeque.push back(i); // 1 2 3 4 5

it = mydeque.begin() ;

++1it;

it = mydeque.insert

// "it" now points to the newly inserted 10

mydeque.insert

(it,2,20);

// "it" no longer valid!

it = mydeque.begin()+2;

vector<int> myvector

mydeque.insert

(it,10);

(2,30);

// 1 10 2 3 45

// 1 20 20 10 2 3 45

(it,myvector.begin (), myvector.end()) ;

// 1 20 30 30 20 10 2 3 4 5

cout << "mydeque contains:";

for (it=mydeque.begin();

cout

<< mn

cout << endl;

Output:

<< *it;

mydeque contains: 1 20 30

it<mydeque.end () ;

30 20 10 2 3 4 5

++it)

C++ deque

Page 8

erase

Syntax:
iterator erase (iterator position);
iterator erase (iterator first, iterator last):;

Removes from the deque container either a single element (position) or a range of elements ([first,last)).

For example,
unsigned int i;

deque<unsigned int> mydeque;

// set some values (from 1 to 10)

for (i=1; i<=10; i++) mydeque.push back(i);

// erase the 6th element

mydeque.erase (mydeque.begin()+5);

// erase the first 3 elements:

mydeque.erase (mydeque.begin(),mydeque.begin()+3);

cout << "mydeque contains:";
for (i=0; i<mydeque.size(); i++)
cout << " " << mydeque[i];

cout << endl;

Output:
mydeque contains: 4 5 7 8 9 10

C++ deque Page 9

swap

Syntax:
iterator erase (iterator position);
iterator erase (iterator first, iterator last):;

Exchanges the content of the vector by the content of dqe, which is another deque object containing
elements of the same type. Sizes may differ.

For example,

unsigned int i;
deque<int> first (3,100); // three ints with a value of 100

deque<int> second (5,200); // five ints with a value of 200
first.swap (second) ;

cout << "first contains:";

for (i=0; i<first.size(); 1i++) cout << " " << first[i];

cout << "\nsecond contains:";

for (1i=0; i<second.size(); 1++) cout << " " << second[i];

Output:
first contains: 200 200 200 200 200
second contains: 100 100 100

C++ deque Page 10

clear

Syntax:

void clear ();

All the elements in the deque container are dropped: their destructors are called, and then they are
removed from the container, leaving it with a size of 0.

For example,
unsigned int i;
deque<int> mydeque;
mydeque.push back (100);
mydeque.push back (200);
mydeque.push back (300);

cout << "mydeque contains:";

for (i=0; i<mydeque.size(); i++) cout << " " << mydeque[i];

mydeque.clear();
mydeque.push back (1101);
mydeque.push back (2202);

cout << "\nmydeque contains:";

for (i=0; i<mydeque.size(); i++) cout << " " << mydequelil];

Output:
mydeque contains: 100 200 300

mydeque contains: 1101 2202

C++ deque Page 11

