
Makefile

Lab #2

COMP2012

Makefile: Motivation

 Small programs single file

 “Not so small” programs :

 Many lines of code
 Multiple components
 More than one programmer

2 COMP152 Makefile

Motivation – continued
 Problems:

 Large files are harder to manage

 (for both programmers and machines)

 Every change requires long compilation time

 Many programmers cannot modify the

 same file simultaneously

 Division to components is desired

3 COMP152 Makefile

Motivation – continued
 Solution : divide project to multiple files

 Targets:

 Good division to components

 Minimum compilation when something is

 changed

 Easy maintenance of project structure,

 dependencies and creation

4 COMP152 Makefile

Project maintenance
 Done in Unix or PC by the Makefile mechanism

 A makefile is a file (script) containing :
 Project structure (files, dependencies)

 Instructions for files creation

 The make command reads a makefile, understands the
project structure and makes up the executable

 Note that the Makefile mechanism is not limited to C
or C++ programs

5 COMP152 Makefile

Filenames

 When you key in make, the make looks for the default filenames in

the current directory. For GNU make, these are:

 GNUMakefile

 makefile

 Makefile

 If there are more than one of the above in the current directory, the

first one according to the above is chosen.

 It is possible to name the makefile anyway you want, then for make

to interpret it, you may type:

make -f <your-filename>

6 COMP152 Makefile

Basic Makefile Format

 Basic Format Summary:

Comments

VAR=value(s)

target: list of prerequisites and dependencies

<tab> command1 to achieve target using $(VAR)

[<tab> command2]

7 COMP152 Makefile

Basic Makefile Format (cont.)

 Comments

 Just like for most shell scripts, they start with ‘#’

 Variables

 var=value

 Used as: $(var)

 Variables can be scalar as well as lists (“arrays”)

8 COMP152 Makefile

Targets

 Target name can be almost anything:
 just a name

 a filename

 a variable

 There can be several targets on the same line if they
depend on the same things

 A target is followed by
 a colon “:”

 and then by a list of dependencies, separated by a space

 The default target make is looking for is called all

 Another common target is clean
 Developers supply it to clean up their source tree from temporary

files, object modules, etc.

 Typical invocation is:
make clean

9 COMP152 Makefile

Dependencies

 The list of dependencies can be:

 Filenames

 Other target names

 Variables

 Separated by a space

 May be empty; means “build always”

 Before the target is built:

 it’s checked whether it is up-to-date (in case of files) by comparing time stamp of

the target of each dependency; if the target file does not exist, it’s automatically

considered “old”.

 If there are dependencies that are “newer” then the target, then the target is

rebuilt; else untouched.

 If you want to “renew” the target without actually editing the dependencies,

“touch” the dependencies with the touch command.

 If the dependency is a name of another rule, make descends recursively to that

rule.

10 COMP152 Makefile

Actions

 A list of actions represents the needed operations to be carried

out to arrive to the rule’s target.

 May be empty.

 Every action in a rule is usually a typical shell command you

would normally type to do the same thing.

 Every command MUST be preceded with a tab!

 This is how make identifies actions as opposed to variable assignments

and targets. Do not indent actions with spaces!

11 COMP152 Makefile

Project structure

 Project structure and dependencies can be
represented as a DAG (= Directed Acyclic Graph)

 Example :
 Program contains 3 files

 main.c., sum.c, sum.h

 sum.h included in both .c files

 Executable should be the file sum

12 COMP152 Makefile

sum (exe)

sum.o main.o

sum.c sum.h sum.h main.c

(implementation
of sum.c)

(header
interface)

(Use of the
functions in
sum.h)

COMP152 Makefile 13

makefile

sum: main.o sum.o

 gcc –o sum main.o sum.o

main.o: main.c sum.h

 gcc –c main.c

sum.o: sum.c sum.h

 gcc –c sum.c # gcc –c sum.c –o sum.o

14 COMP152 Makefile

Rule syntax

main.o: main.c sum.h

 gcc –c main.c

tab

Rule

dependency

action

15 COMP152 Makefile

Equivalent makefiles

 .o depends (by default) on corresponding .c file.
Therefore, equivalent makefile is:

sum: main.o sum.o

 gcc –o sum main.o sum.o

main.o: sum.h

 gcc –c main.c

sum.o: sum.h

 gcc –c sum.c

16 COMP152 Makefile

Equivalent makefiles - continued
 We can compress identical dependencies and use

built-in macros to get another (shorter) equivalent
makefile :
 $@ is to substitute for the target

 $* is to take the target prefix element by element

sum: main.o sum.o

 gcc –o $@ main.o sum.o # gcc –o sum main.o sum.o

main.o sum.o: sum.h

 gcc –c $*.c # gcc –c main.c; gcc –c sum.c

17 COMP152 Makefile

make operation

 Project dependencies tree is constructed
 Target of first rule should be created

 We go down the tree to see if there is a target that
should be recreated. This is the case when the target
file is older than one of its dependencies

 In this case we recreate the target file according to
the action specified, on our way up the tree.
Consequently, more files may need to be recreated

 If something is changed, linking is usually necessary

18 COMP152 Makefile

make operation - continued
 make operation ensures minimum compilation, when

the project structure is written properly

 Do not write something like:
 prog: main.c sum1.c sum2.c
 gcc –o prog main.c sum1.c sum2.c

 which requires compilation of all project when
something is changed

19 COMP152 Makefile

Make operation - example
File Last Modified

sum 10:03
main.o 09:56
sum.o 09:35
main.c 10:45
sum.c 09:14
sum.h 08:39

20 COMP152 Makefile

Make operation - example
 Operations performed:

 gcc –c main.c
 gcc –o sum main.o sum.o

 main.o should be recompiled (main.c is newer).
 Consequently, main.o is newer than sum and therefore

sum should be recreated (by re-linking).

21 COMP152 Makefile

Another makefile example
Makefile to compare sorting routines

BASE = /home/blufox/base

CC = gcc

CFLAGS = -O –Wall # Optimize and issue warnings, if any

EFILE = $(BASE)/bin/compare_sorts

INCLS = -I$(LOC)/include

LIBS = $(LOC)/lib/g_lib.a \

 $(LOC)/lib/h_lib.a

LOC = /usr/local

OBJS = main.o another_qsort.o chk_order.o \

 compare.o quicksort.o

$(EFILE): $(OBJS)

 @echo “linking …” # only print “linking…” without echo “linking”

 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS) # turn off the printing of this line

$(OBJS): compare_sorts.h

 $(CC) $(CFLAGS) $(INCLS) –c $*.c

Clean intermediate files

clean:

 rm *~ $(OBJS)

22 COMP152 Makefile

Additional Remarks

 A leading @ means the command will not be displayed on

the screen.

 For example, a line echo “Compiling ...” displays echo

"Compiling ...” and Compiling ...

 BUT @echo "Compiling ...” displays Compiling ... only

 We can define multiple targets in a makefile
 Target clean – has an empty set of dependencies.

Used to clean intermediate files.
 make clean

 Will remove intermediate files

23 COMP152 Makefile

Another More Complex Example

 Suppose you have a text editor which consists of eight C

source files

 main.c includes defs.h

 kbd.c includes defs.h and command.h

 command.c includes defs.h and command.h

 display.c includes defs.h and buffer.h

 insert.c includes defs.h and buffer.h

 search.c includes defs.h and buffer.h

 files.c includes defs.h and command.h and

 buffer.h

 utils.c includes defs.h

24 COMP152 Makefile

main.c

insert.c
kbd.c

search.c

files.c

command.c
utils.c

display.c

command.h

defs.h

buffer.h

command.o

kbd.o

files.o
display.o

insert.o

search.o

utils.o

main.o

edit

COMP152 Makefile 25

COMP152 Makefile 26

edit : main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
 gcc -o edit main.o kbd.o command.o \
 display.o insert.o \
 search.o files.o utils.o

main.o : main.c defs.h
 gcc -c main.c
kbd.o : kbd.c defs.h command.h
 gcc -c kbd.c
command.o : command.c defs.h command.h
 gcc -c command.c
display.o : display.c defs.h buffer.h
 gcc -c display.c
insert.o : insert.c defs.h buffer.h
 gcc -c insert.c
search.o : search.c defs.h buffer.h
 gcc -c search.c
files.o : files.c defs.h buffer.h command.h
 gcc -c files.c
utils.o : utils.c defs.h
 gcc -c utils.c
clean :
 rm edit main.o kbd.o command.o \
 display.o insert.o search.o \
 files.o utils.o

make
make edit
make main.o
make clean

Variables

 Allow us to define variables to make files more flexible and to

avoid certain errors.

 Consider:

 edit : main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

 gcc -o edit main.o kbd.o command.o \

 display.o insert.o \

 search.o files.o utils.o

27 COMP152 Makefile

Variables

objects = main.o kbd.o command.o display.o \

 insert.o search.o files.o utils.o

edit : $(objects)

 gcc -o edit $(objects)

...

clean :

 rm edit $(objects)

28 COMP152 Makefile

Cleaning

 Here was how we wrote a make rule for cleaning our example

editor:

 clean:

 rm edit $(objects)

29 COMP152 Makefile

