Lab #2
COMP2012

Makefile

Makefile: Motivation

» Small programs = single file

» "Not so small” programs :
» Many lines of code

» Multiple components
» More than one programmer

COMP152 Makefile 2

Motivation - continued

» Problems:

» Large files are harder to manage
(for both programmers and machines)
» Every change requires long compilation time
» Many programmers cannot modify the
same file simultaneously
» Division to components is desired

COMP152 Makefile 3

Motivation - continued

» Solution : divide project o multiple files
» Targefts:

» Good division to components

» Minimum compilation when something is
changed

» Easy maintenance of project structure,
dependencies and creation

COMP152 Makefile 4

Project maintenance

» Done in Unix or PC by the Makefile mechanism

» A makefile is a file (script) containing :
» Project structure (files, dependencies)
» Instructions for files creation

» The make command reads a makefile, understands the
project structure and makes up the executable

» Note that the Makefile mechanism is not limited to C
or C++ programs

COMP152 Makefile 5

Filenames
» When you key in make, the make looks for the default filenames in
the current directory. For GNU make, these are:
» GNUMakefile
» makefile
» Makefile

» If there are more than one of the above in the current directory, the
first one according to the above is chosen.

» It is possible to name the makefile anyway you want, then for make
to interpret it, you may type:

make -f <your-filename>

COMP152 Makefile 6

Basic Makefile Format

» Basic Format Summary:

Comments
VAR=value (s)

target: list of prerequisites and dependencies
<tab> commandl to achieve target using $ (VAR)
[<tab> command?2]

COMP152 Makefile 7

Basic Makefile Format (cont.)

» Comments
» Just like for most shell scripts, they start with “#’

» Variables

» var=value
» Used as: S (var)

» Variables can be scalar as well as lists (“arrays”)

COMP152 Makefile 8

Targets

» Target name can be almost anything:
» just a name
» a filename
» a variable

» There can be several targets on the same line if they
depend on the same things

» A target is followed by

» a colon
» and then by a list of dependencies, separated by a space

» The default target make is looking for is called all

» Another common target is clean

» Developers supply it to clean up their source tree from temporary
files, object modules, etc.

» Typical invocation is:
make clean

COMP152 Makefile o]

Dependencies

» The list of dependencies can be:
» Filenames
» Other target names

» Variables
» Separated by a space
» May be empty; means “build always”

» Before the target is built:

» it’s checked whether it is up-to-date (in case of files) by comparing time stamp of
the target of each dependency; if the target file does not exist, it’s automatically
considered “old”.

» If there are dependencies that are “newer’ then the target, then the target is
rebuilt; else untouched.

» If you want to “renew” the target without actually editing the dependencies,
“touch” the dependencies with the touch command.

» If the dependency is a name of another rule, make descends recursively to that
rule.

COMP152 Makefile 10

Actions

» A list of actions represents the needed operations to be carried
out to arrive to the rule’s target.

» May be empty.
» Every action in a rule is usually a typical shell command you

would normally type to do the same thing.

» Every command MUST be preceded with a tab!

» This is how make identifies actions as opposed to variable assignments
and targets. Do not indent actions with spaces!

COMP152 Makefile 11

Project structure

» Project structure and dependencies can be
represented as a DAG (= Directed Acyclic Graph)

» Example :

Program contains 3 files
main.c., sum.c, sum.h

sum.h included in both .c files

3
3
3
» Executable should be the file sum

COMP152 Makefile 12

sum (exe)

/\.

main.o 7‘0 \
main.c sum.h sum.c sum.h
(Use of the (implementation (header
functions in of sum.c) interface)

sum.h)

COMP152 Makefile 13

makefile

sum: main.o sum.o
gcc —0 sum main.o sum.o

main.o:; main.c sum.h
gcc —c main.c

sum.o: sum.c sum.h
gcc —csum.c # gcc —C sum.c —0 sum.o

COMP152 Makefile 14

Rule syntax

, : ependency)
main.o: main.c sum.h
T B

action

COMP152 Makefile 15

Equivalent makefiles

» .0 depends (by default) on corresponding .c file.
Therefore, equivalent makefile is:

sum: main.o sum.o
gcc —0 sum main.o sum.o

main.o: sum.h
gcc —c main.c

sum.o: sum.h
gcc —c sum.c

COMP152 Makefile 16

Equivalent makefiles - continued

» We can compress identical dependencies and use
built-in macros to get another (shorter) equivalent
makefile :

» $@ is to substitute for the target
» $* is to take the target prefix element by element

sum: main.o sum.o
gcc —0 $@ main.o sum.0 # gcc —0 sum main.o sum.o

main.o sum.o: sum.h
gcc —c $*.c # gcc —C main.c; gcc —C sum.c

COMP152 Makefile 17

make operation

» Project dependencies tree is constructed
» Target of first rule should be created

» We go down the tree to see if there is a target that
should be recreated. This is the case when the target
file is older than one of its dependencies

» In this case we recreate the target file according to
the action specified, on our way up the tree.
Consequently, more files may need to be recreated

» If something is changed, linking is usually necessary

COMP152 Makefile 18

make operation - continued

» make operation ensures minimum compilation, when
the project structure is written properly

» Do not write something like:
prog: main.c suml.c sum2.c
gcc -o prog main.c suml.c sum2.c

which requires compilation of all project when
something is changed

COMP152 Makefile 19

Make operation - example

File Last Modified
sum 10:03
main.o 09:56

sum.o 09:35
main.c 10:45
sum.c 09:14
sum.h 08:39

COMP152 Makefile 20

Make operation - example

» Operations performed:

gcc -c main.c
gcc -0 sum main.o sum.o

» main.o should be recompiled (main.c is newer).

» Consequently, main.o is newer than sum and therefore
sum should be recreated (by re-linking).

COMP152 Makefile 21

Another makefile example

_____ # Makefile to compare sorting_routines.

BASE = /home /blufox/base

CC = gcc
CFLAGS = -O —-Wadll # Optimize and issue warnings, if any
EFILE = $(BASE)/bin/compare_sorts
INCLS = -I$(LOC)/include
LIBS = $(LOQ)/lib/g_lib.a \
$(LOC)/lib/h_lib.a
LOC = /usr/local

OBJS = main.o another_gsort.o chk_order.o \

compare.o quicksort.o

$(EFILE): $(OBJS)

@echo “linking ...” # only print “linking...” without echo “linking”
@$(CC) $(CFLAGS) —o $@ $(OBJS) $(LIBS) # turn off the printing of this line

$(OBJS): compare_sorts.h
$(CC) $(CFLAGS) $(INCLS) — $*.c

Clean intermediate files
clean:

rm *~ $(OBJS)

COMP152 Makefile 22

Additional Remarks

» A leading @ means the command will not be displayed on
the screen.

» For example, a line echo “Compiling ...” displays echo
"Compiling ...” and Compiling ...
» BUT decho "Compiling ...” displays Compiling ... only

» We can define multiple targets in a makefile

» Target clean - has an empty set of dependencies.
Used to clean intfermediate files.

» make clean
» Will remove intermediate files

COMP152 Makefile 23

Another More Complex Example

» Suppose you have a text editor which consists of eight C
source files

» main.c includes defs.h

» kbd.c includes defs.h and command.h

» command.c includes defs.h and command.h

» display.c includes defs.h and buffer.h

» insert.c includes defs.h and buffer.h

» search.c includes defs.h and buffer.h

» files.c includes defs.h and command.h and
buffer.h

b utils.c includes defs.h

COMP152 Makefile 24

e
[}

pS

COMP152 Makefile 25

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
gcc -o edit main.o kbd.o command.o \
display.o insert.o \
search.o files.o utils.o

main.o : main.c defs.h
gcc -c main.c

kbd.o : kbd.c defs.h command.h
gce -c kbd.c

command.o : command.c defs.h command.h
gcec -c command.c ma ke
display.o : display.c defs.h buffer.h .
gcc -c display.c make edit
insert.o : insert.c defs.h buffer.h .
gcc -c insert.c make main.o
search.o : search.c defs.h buffer.h
gcc -c search.c make clean

files.o : files.c defs.h buffer.h command.h
gcec -c files.c
utils.o : utils.c defs.h
gcc -c utils.c
clean
rm edit main.o kbd.o command.o \
display.o insert.o search.o \
files.o utils.o

COMP152 Makefile 26

Variables

» Allow us to define variables to make files more flexible and to
avoid certain errors.

» Consider:

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
gcc -o edit main.o kbd.o command.o \
display.o insert.o \
search.o files.o utils.o

COMP152 Makefile 27

Variables

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $ (objects)
gcc -o edit $ (objects)

clean
rm edit $ (objects)

COMP152 Makefile 28

Cleaning

» Here was how we wrote a make rule for cleaning our example
editor:

clean:
rm edit $ (objects)

COMP152 Makefile 29

