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Makefile: Motivation 

 Small programs            single file 
 

 “Not so small” programs : 
 

 Many lines of code 
 Multiple components 
 More than one programmer 
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Motivation – continued 
 Problems: 

 

 Large files are harder to manage 

   (for both programmers and machines) 

 Every change requires long compilation time 

 Many programmers cannot modify the 

   same file simultaneously 

 Division to components is desired 
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Motivation – continued 
 Solution : divide project to multiple files 

 Targets: 
 

 Good division to components 

 Minimum compilation when something is 

   changed 

 Easy maintenance of project structure, 

   dependencies and creation 
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Project maintenance 
 Done in Unix or PC by the Makefile mechanism 

 A makefile is a file (script) containing : 
 Project structure (files, dependencies) 

 Instructions for files creation 

 The make command reads a makefile, understands the 
project structure and makes up the executable 

 Note that the Makefile mechanism is not limited to C  
or C++ programs 
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Filenames 

 When you key in make, the make looks for the default filenames in 

the current directory. For GNU make, these are: 

 GNUMakefile 

 makefile 

 Makefile 

 If there are more than one of the above in the current directory, the 

first one according to the above is chosen. 

 It is possible to name the makefile anyway you want, then for make 

to interpret it, you may type: 

make -f <your-filename> 
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Basic Makefile Format 

 Basic Format Summary: 

# Comments 

 

VAR=value(s) 

 

target: list of prerequisites and dependencies 

<tab>   command1 to achieve target using $(VAR) 

[<tab>  command2] 

7 COMP152 Makefile 



Basic Makefile Format (cont.) 

 Comments 

 Just like for most shell scripts, they start with ‘#’ 

 Variables 

 var=value 

 Used as: $(var) 

 Variables can be scalar as well as lists (“arrays”) 
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Targets 

 Target name can be almost anything: 
 just a name 

 a filename 

 a variable 

 There can be several targets on the same line if they 
depend on the same things 

 A target is followed by 
 a colon “:” 

 and then by a list of dependencies, separated by a space 

 The default target make is looking for is called all 

 Another common target is clean 
 Developers supply it to clean up their source tree from temporary 

files, object modules, etc. 

 Typical invocation is: 
make clean 

9 COMP152 Makefile 



Dependencies 

 The list of dependencies can be: 

 Filenames 

 Other target names 

 Variables 

 Separated by a space 

 May be empty; means “build always” 

 Before the target is built: 

 it’s checked whether it is up-to-date (in case of files) by comparing time stamp of 

the target of each dependency; if the target file does not exist, it’s automatically 

considered “old”. 

 If there are dependencies that are “newer” then the target, then the target is 

rebuilt; else untouched. 

 If you want to “renew” the target without actually editing the dependencies, 

“touch” the dependencies with the touch command. 

 If the dependency is a name of another rule, make descends recursively to that 

rule. 
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Actions 

 A list of actions represents the needed operations to be carried 

out to arrive to the rule’s target. 

 May be empty. 

 Every action in a rule is usually a typical shell command you 

would normally type to do the same thing. 

 Every command MUST be preceded with a tab! 

 This is how make identifies actions as opposed to variable assignments 

and targets. Do not indent actions with spaces! 
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Project structure 

 Project structure and dependencies can be 
represented as a DAG (= Directed Acyclic Graph)  

 Example : 
 Program contains 3 files 

 main.c., sum.c, sum.h 

 sum.h included in both .c files 

 Executable should be the file sum 
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sum (exe) 

sum.o main.o 

sum.c sum.h sum.h main.c 

(implementation 
of sum.c) 

(header 
interface) 

(Use of the 
functions in  
sum.h) 
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makefile 

sum: main.o sum.o 

 gcc –o sum main.o sum.o 

 

main.o: main.c sum.h 

 gcc –c main.c  

 

sum.o: sum.c sum.h 

 gcc –c sum.c    # gcc –c sum.c –o sum.o 
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Rule syntax 
 

main.o: main.c sum.h             

 gcc –c main.c  

 

tab 

 

   

Rule 

dependency 

action 
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Equivalent makefiles 

 .o depends (by default) on corresponding .c file. 
Therefore, equivalent makefile is: 
 

sum: main.o sum.o 

 gcc –o sum main.o sum.o 

 

main.o: sum.h 

 gcc –c main.c  

 

sum.o: sum.h 

 gcc –c sum.c 
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Equivalent makefiles - continued 
 We can compress identical dependencies and use 

built-in macros to get another (shorter) equivalent 
makefile : 
 $@ is to substitute for the target 

 $* is to take the target prefix element by element  

sum: main.o sum.o 

 gcc –o $@ main.o sum.o     # gcc –o sum main.o sum.o 
 

main.o sum.o: sum.h 

 gcc –c $*.c                          # gcc –c main.c; gcc –c sum.c 
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make operation  

 Project dependencies tree is constructed 
 Target of first rule should be created 

 We go down the tree to see if there is a target that 
should be recreated. This is the case when the target 
file is older than one of its dependencies 

 In this case we recreate the target file according to 
the action specified, on our way up the tree. 
Consequently, more files may need to be recreated 

 If something is changed, linking is usually necessary 
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make operation - continued 
 make operation ensures minimum compilation, when 

the project structure is written properly 
 

 Do not write something like: 
   prog: main.c sum1.c sum2.c 
  gcc –o prog main.c sum1.c sum2.c 
 

 which requires compilation of all project when 
something is changed 
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Make operation - example 
File           Last Modified 
 

sum                10:03          
main.o      09:56 
sum.o              09:35 
main.c             10:45 
sum.c              09:14 
sum.h              08:39 
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Make operation - example 
 Operations performed: 

 

 gcc –c main.c 
 gcc –o sum main.o sum.o 
 

 main.o should be recompiled (main.c is newer). 
 Consequently, main.o is newer than sum and therefore 

sum should be recreated (by re-linking). 
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Another makefile example 
# Makefile to compare sorting routines 

  

BASE = /home/blufox/base 

CC           =   gcc 

CFLAGS  =   -O –Wall                          # Optimize and issue warnings, if any 

EFILE      =   $(BASE)/bin/compare_sorts 

INCLS     =   -I$(LOC)/include 

LIBS        =   $(LOC)/lib/g_lib.a \ 

                     $(LOC)/lib/h_lib.a 

LOC        =   /usr/local 

 

OBJS = main.o    another_qsort.o    chk_order.o \ 

             compare.o    quicksort.o 

 

$(EFILE): $(OBJS) 

 @echo “linking …”                                                 # only print “linking…” without echo “linking” 

 @$(CC) $(CFLAGS) –o $@ $(OBJS) $(LIBS)      # turn off the printing of this line 

 

$(OBJS): compare_sorts.h 

 $(CC) $(CFLAGS) $(INCLS) –c $*.c 

 

# Clean intermediate files 

clean: 

 rm *~ $(OBJS) 
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Additional Remarks 

 A leading @ means the command will not be displayed on 

the screen. 

 For example, a line echo “Compiling ...” displays echo 

"Compiling ...” and Compiling ... 

 BUT @echo "Compiling ...” displays Compiling ... only 

 We can define multiple targets in a makefile 
 Target clean – has an empty set of dependencies. 

Used to clean intermediate files. 
 make clean 

 Will remove intermediate files 
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Another More Complex Example 

 Suppose you have a text editor which consists of eight C 

source files 

 main.c includes defs.h 

 kbd.c includes defs.h and command.h 

 command.c includes defs.h and command.h 

 display.c includes defs.h and buffer.h 

 insert.c includes defs.h and buffer.h 

 search.c includes defs.h and buffer.h 

 files.c includes defs.h and command.h and  

  buffer.h 

 utils.c includes defs.h 
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main.c 

insert.c 
kbd.c 

search.c 

files.c 

command.c 
utils.c 

display.c 

command.h 

defs.h 

buffer.h 

command.o 

kbd.o 

files.o 
display.o 

insert.o 

search.o 

utils.o 

main.o 

edit 
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edit : main.o kbd.o command.o display.o \ 
       insert.o search.o files.o utils.o 
       gcc -o edit main.o kbd.o command.o \ 
                   display.o insert.o \  
                   search.o files.o utils.o 
 
main.o : main.c defs.h 
        gcc -c main.c 
kbd.o : kbd.c defs.h command.h 
        gcc -c kbd.c 
command.o : command.c defs.h command.h 
        gcc -c command.c 
display.o : display.c defs.h buffer.h 
        gcc -c display.c 
insert.o : insert.c defs.h buffer.h 
        gcc -c insert.c 
search.o : search.c defs.h buffer.h 
        gcc -c search.c 
files.o : files.c defs.h buffer.h command.h 
        gcc -c files.c 
utils.o : utils.c defs.h 
        gcc -c utils.c 
clean : 
        rm edit main.o kbd.o command.o \ 
                display.o insert.o search.o \ 
                files.o utils.o 

make 
make edit 
make main.o 
make clean 



Variables 

 Allow us to define variables to make files more flexible and to 

avoid certain errors. 

 Consider: 
 
    edit : main.o kbd.o command.o display.o \ 

           insert.o search.o files.o utils.o 

           gcc -o edit main.o kbd.o command.o \ 

                       display.o insert.o \  

                       search.o files.o utils.o 
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Variables 

objects = main.o kbd.o command.o display.o \ 

          insert.o search.o files.o utils.o 

 

edit : $(objects) 

        gcc -o edit $(objects) 

 

... 

 

 

clean : 

        rm edit $(objects) 
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Cleaning 

 Here was how we wrote a make rule for cleaning our example 

editor:  

 clean: 

  rm edit $(objects) 

 

 

29 COMP152 Makefile 


