
The Hong Kong University of Science & Technology
Department of Computer Science

COMP 2012H: Honors OOP and Data Structures
Written Assignment

Due by 5pm, Monday, 30 November, 2015

Your answers will be graded on clarity, correctness, efficiency, and precision.

1. “Data Structures and Algorithms in C++,” Goodrich et al, C-4.9
Describe how to efficiently implement the queue ADT using two stacks.

2. “Data Structures and Algorithms in C++,” Goodrich et al, C-4.18
Describe an algorithm on how to implement stack ADT of push and pop using two
queues labeled as Q1 and Q2.

3. “Data Structures and Algorithms in C++,” Goodrich et al, C-4.3
Suppose you are given an n-element array A containing distinct integers that are listed
in increasing order. Given a number k, describe a recursive algorithm which returns
true if there are two integers in A that sum to k, false otherwise.

4. Consider the following recursive program:

int fun(int A[], int p, int r){

if (p == r)

return r;

else {

int m = (p+r)/2;

int i = fun(A, p, m);

int j = fun(A, m+1, r);

if (A[i] >= A[j])

return i;

else return j;

}

}

(a) Suppose A = {5, 6, 12, 2, 4, 8, 16, 21}. What is the final output of fun(A, 0, 7)

?

(b) Suppose A = {1, 1, 1, 1, 1, 1, 1, 1}. What is the final output of fun(A, 0, 7) ?

(c) What does the program do or return?

5. Consider the following recursive procedure:

// n is any positive integer

// m is between 2 and 9

void foo(int n, int m){

1

if(n < m)

cout << n;

else{

foo(n/m, m);

cout << n%m;

}

}

(a) What is the output for foo(10, 2)?

(b) What is the output for foo(34, 5)?

(c) What does the procedure do?

6. Consider the standard arithmetic expressions (infix expressions) with the following
characteristics:

• It is a legal infix expression with at most 100 characters

• It has FOUR operators: exponentiation (^), multiplication (*), addition (+),
subtraction (-), and possibly parentheses (and)

• It has variables taken from the set {a, b, . . . , z}
• It contains no blanks

Describe an algorithm to convert an infix expression into postfix expressions using a
stack. You can assume that a stack operations are provided, so further explanation
and description of these operations is not needed.

Hint: Note that the four operators can be categorized into three groups according to
their associativity. Let A, B, C and D be expressions that are either single variables
or parenthesized expressions.

• Group 1 consists only of the subtraction operator since it is the only operator
that is left associative and not right associative. That is, A−B−C can only be
evaluated as (A−B)− C. Evaluating it as A− (B − C) is incorrect.

• Group 2 consists only of the exponentiation operator since it is the only operator
that is right associative and not left associative. That is, AˆBˆCˆD can only be

evaluated as A(B(CD)).

• Group 3 consists of the multiplication and addition operators since they are both
left and right associative.

7. “Data Structures and Algorithms in C++,” Goodrich et al, R-6.8
Let T be a binary tree with more than one node.

(a) Is it possible that the preorder traversal of T visits the nodes in the same order
as the postorder traversal of T? If so, give an example; otherwise, argue why
this cannot occur.

(b) Is it possible that the preorder traversal of T visits the nodes in the reverse order
of the postorder traversal of T? If so, give an example; otherwise, argue why this
cannot occur.

2

1

692

4

5

Figure 1: A binary tree.

8. This question is about the relations of preorder, inorder, and postorder traversals of
binary trees with distinct elements stored in the nodes (i.e., distinct node labels).

(a) Give the preorder traversal, inorder traversal, and postorder traversal of the bi-
nary tree with the indicated node labels as shown in Figure 1.

i. Preorder:

ii. Inorder:

iii. Postorder:

(b) You are given the preorder and inorder traversals of a binary tree with node
labels as below:
Preorder: 8, 6, 3, 4, 5, 1, 2;
Inorder: 3, 6, 4, 8, 1, 5, 2.

i. Draw the binary tree.

ii. Give the corresponding postorder traversal of this tree.

(c) Given the preorder and inorder traversals of a binary tree with distinct node
labels, the corresponding binary tree can be uniquely determined. Describe an
algorithm to determine that.

Hint: You may answer this in two ways: 1) For any node in the tree, determine
its left and right children; or 2) Give the postorder representation of the binary
tree.

(d) Actually it is known that given the postorder and inorder traversals of a binary
tree with distinct node labels, the corresponding binary tree can also be uniquely
determined. However, if only the preorder and postorder traversals are given,
then the corresponding binary tree may not be uniquely determined.

For example, let’s say we have the preorder and postorder traversals of a binary
tree as below:
Preorder: 3, 4, 2, 1, 5;
Postorder: 4, 5, 1, 2, 3.
Give two distinct binary trees which yield the same traversal results as above.

9. “Data Structures and Algorithms in C++”, Goodrich et al, C-9.7 & C-9.8
Let D be a binary search search tree with n items.

3

Figure 2: Two numbers a0 and a1 and their split value s0 on a line.

Figure 3: The perfect BST constructed based on a0 = 2.3, a1 = 4.7 and the split value
s0 = 3.5.

Describe an algorithm, findAllInRange(k1, k2), which returns all the elements
with key k in D, where k1 ≤ k ≤ k2.

10. Suppose you are given N distinct real numbers. Given a value x, could you find the
number closest to it, i.e., x’s closest neighbor? Ties are resolved arbitrarily.

For example, given two numbers 2.3 and 4.7. If x = 3, its closest neighbor is 2.3.
If x = 1.2, the closest neighbor is 2.3. On the other hand, the closest neighbor for
x = 5.1 is 4.7.

Clearly, one can do a linear search to find the closest neighbor. In this problem, you
are going to arrange the numbers as part of a binary search tree (BST) in order to
efficiently support frequent queries on closest neighbors. Your search will runs much
faster than linear time (runs in O(logN) time in the worst case).

For simplicity, let’s first consider N = 2k in this problem, where k is a positive integer.
To start, first sort the numbers and labeled the sorted numbers from a0, a1, . . . , aN−1.
Let’s consider the simple case of N = 2, and you will generalize the case to arbitrary
N in the following questions.

Consider our example again with values a0 = 2.3 and a1 = 4.7. We first put them in
a linear line according to Figure 2, with the midpoint at s0 = 3.5. The midpoint s0
is called the split value. It has significance that if a query is lower than s0, then a0 is
the closest neighbor; otherwise a1 is the closest neighbor.

Given the above observation, one can form a perfect BST (i.e., a balanced BST with
each level full) consisting of a0, a1 at the leaves (square nodes) and s0 (circle node)
as shown in Figure 3. The split value s0 is the internal node (root in this case) of the
tree.

Given such a BST and a query x, one can simply traverse down the tree to search
for x. The leaf node is the closest neighbor. For example, if x = 3, by searching for
x we reach the leaf 2.3, which is the correct closest neighbor. On the other hand, if
x = 5.1, we reach the leaf 4.7, which is also the correct closest neighbor.

(a) Suppose now k = 2, i.e., N = 4 with a[] = {1.2, 2.5, 4.2, 5.7} as shown in Figure 4.

4

Figure 4: Four sorted numbers.

i. Please show below the perfect BST formed for this case with all the ai’s at
the leaves (indicated as square nodes) and si (the split values) as internal
nodes (indicated as circle) to support efficient closest neighbor queries.

ii. Given a value x = 3.2 and the constructed BST in Part 10(a)i, describe how
you would find its closest neighbor.

(b) Suppose you are given a sorted list of 2k − 1 distinct real numbers labeled as
b0, b1, . . . , b2k−2.

i. Describe an efficient algorithm to put these numbers into a perfect binary
search tree.

ii. In the tree you construct above, which bis are the leave nodes?

(c) Consider the general case that N = 2k. Given distinct sorted real numbers
labeled a0, a1, . . . , aN−1, we can find their split values s0, s1, . . . , sN−2. A perfect
BST can then be formed based on these 2N − 1 numbers to support efficient
closest neighbor queries.

i. Express si in terms of ai and ai+1, for 0 ≤ i ≤ N − 2.

ii. Describe an algorithm to construct a perfect BST to support fast search on
closest neighbor.

(d) Given an array a[0...N-1] of N = 2k sorted distinct real numbers, you want to
output in sorted order all the ai’s within the range (x, y). For example, consider
the case of Part 10a. Given a range of (2, 5), you should output 2.5 and 4.2.

Using the perfect BST you obtained in Part 10c, or otherwise, describe an efficient
algorithm on how to use it to achieve the above.

(e) Finally, consider now an arbitrary N such that 2k−1 < N < 2k. Describe how
you would construct a BST which supports efficient search on closest neighbor.

Using the tree, describe how to search for the closest neighbor given a value x.

11. Consider inserting the keys 31, 20, 54, 3, 39, 28, 17, 78, 53, 62, 124, 22, 27, 41 into
a hash table of length m = 17 using open addressing with the primary hash function
h1(k) = k mod m.

By drawing the hash table after inserting each key, illustrate the result of inserting
these keys using

(a) linear probing; and

(b) double hashing, where the secondary hashing function is given by h2(k) = 1 +
(k mod 13).

5

