
The Hong Kong University of Science & Technology

Department of Computer Science

COMP 2012H: Honors OOP and Data Structures

Written Assignment Solutions

1. Name the two stacks as E and D, for we will enqueue into E and dequeue from D.
To implement enqueue(e), simply call E.push(e). To implement dequeue(), simply call
D.pop(), provided that D is not empty. If D is empty, iteratively pop every element
from E and push it onto D, until E is empty, and then call D.pop().

2. To implement the Stack ADT using two queues, Q1 and Q2, we can simply enqueue
elements into Q1 whenever a push call is made.

For pop calls, we can dequeue all elements of Q1 and enqueue them into Q2 except for
the last element which we set aside in a temp variable. We then return the elements
to Q1 by dequeing from Q2 and enqueing into Q1. The last element that we set aside
earlier is then returned as the result of the pop.

Note: The students may simply return the last element in Q1 and in the following
operations, the roles of Q1 and Q2 would be swapped.

3. The solution makes use of the function FindPair(A, i, j, k) below, which given the
sorted subarray A[i..j] determines whether there is any pair of elements that sums to
k.

First it tests whether A[i] + A[j] < k. Because A is sorted, for any j′ ≤ j, we have
A[i] + A[j′] < k. Thus, there is no pair involving A[i] that sums to k, and we can
eliminate A[i] and recursively check the remaining subarray A[i + 1..j]. Similarly, if
A[i] + A[j] > k, we can eliminate A[j] and recursively check the subarray A[i..j − 1].
Otherwise, A[i]+A[j] = k and we return true. If no such pair is ever found, eventually
all but one element is eliminated (i = j), and we return false.

// return true if there are 2 elements of A[i,...j] that sum to k

FindPair(A, i, j, k)

if i = j then

return false

if A[i] + A[j] < k then

return FindPair(A, i+1, j, k)

else

if A[i] + A[j] > k then

return FindPair(A, i, j-1, k)

else

return true

4. (a) 7

(b) 0

(c) It returns the lowest array index of the maximum element.

5. (a) 1010

1

21

5

8

6

3 4

(b) 114

(c) It outputs the number n to the base m.

6. Step 1. Initialize the stack. Read in the infix expression.

Step 2. Get one character from the expression

Step 3. If it is a variable (operand), write it out. Repeat Step 2.

Step 4. If it is a (, push it into the stack. Repeat Step 2.

Step 5. If it is a), pop from the stack all the way to), writing out all the operators
in sequence (do not write out (and)). Repeat Step 2.

Step 6. If it is a - or +, keep popping the stack if its operator is +, -, ^, or * and write
them out in sequence. Push the new operator into the stack. Repeat Step 2.

Step 7. If it is a *, keep popping the stack if its operator is ^ or *. Push the new *

into the stack. Repeat Step 2.

Step 8. If it is a ^, push it into the stack. Repeat Step 2.

Step 9. If it is a null character (end of line), pop and write out all the operators in
the stack.

7. (a) It is not possible for the postorder and preorder traversal of a tree with more
than one node to visit the nodes in the same order. It is because a preorder
traversal will always visit the root node first, while a postorder traversal node
will always visit an external node first.

(b) It is possible for a preorder and a postorder traversal to visit the nodes in the
reverse order. Consider the case of a tree with only two nodes.

8. (a) Preorder: 5, 4, 2, 1, 9, 6
Inorder: 4, 2, 5, 9, 1, 6
Postorder: 2, 4, 9, 6, 1, 5

(b)

Postorder: 3, 4, 6, 1, 2, 5, 8

(c) Suppose T is the corresponding binary tree to be determined. Let P, I be the
given preorder and inorder traverval sequences for T respectively. Observe that
the first element v of P is the root of T . Locate the v in I by doing linear search
from left to right. Suppose I1, I2 are all elements in I at the left and right of v
respectively. Then we know that I1, I2 should be the inorder traversal sequences
of the left subtree T1 and right subtree T2 of the root v respectively. Let l = |I1|
and r = |I2|. Set P1 be the l subsequent elements following v in P , and set P2 be

2

4

3

2

1

5

4

3

2

1

5

Figure 1: Two trees with the same pair of preorder and postorder traversals.

Figure 2: A perfect BST to support closest neighbor search.

the remaining r elements following P1 in P . Then we know that P1, P2 should be
the preorder traversal sequences of T1, T2 respectively. Now we can recursively
use P1, I1 to determine T1, and use P2, I2 to determine T2. And finally we can
determine the original tree T .

(d) See Figure 1.

9. The basic idea is that once you know a sub-tree does not lead to the answer, do not
traverse it. This can be done using recursion: if the node data is larger than k2, go
to the left. If the node data is smaller than k1, go to the right. If it is neither (data
lying between k1 and k2), print the data and visit its left and right subtrees.

10. (a) i. The tree is shown below:

ii. Start from the root. Since the coordinate of query node is 3.2, which is less
than 3.35, it goes to the left sub-tree. The query node value is larger than
the split 1.85, so it goes to the right sub-tree. It reaches to the leaf node a1,
which is the nearest node.

(b) i. Construct the binary tree by inserting the nodes to the tree one by one.

If k = 1 (single node), simply return the node with NULL left and right
children.

Let m = 2k−1−1. Choose bm and create it as the root. All the other nodes
are divided into two equal left and right sub-groups b0, b1, . . . , bm−1 and
bm+1, bm+2, . . . , b2k−2.

Return,recursively, the median of the left subgroup as the left child of bm.

3

Return,recursively, the median of the right subgroup as the right child of
bm.

ii. The leaves are the bis of even labels, i.e., b0, b2, b4, . . . , b2k−2.

(c) i. si = (ai + ai+1)/2.

ii. The tree can be constructed as follows:

1 Compute the split value of each pair of neighboring nodes according to
Part 10(c)i. Arrange these 2k − 1 values into a perfect BST according to
Part 10b. The last levels are s2j , where 0 ≤ j ≤ k − 1.

2 Insert the sorted ais sequentially to the last level of the constructed tree
above as leaves. Specifically, s2j has a2j and a2j+1 as its left and right
children, respectively, for 0 ≤ j ≤ k − 1.

Nearest neighbor search: Recursively compare the query value with the split
value. If the value is smaller than (or equal to) the split value, then go left.
Else go right. When the search goes to the leaf node, return the leaf as the
nearest neighbor.

(d) The search is to find the smallest node (and hence its corresponding index l)
greater than the lower bound x and the largest node (and hence its index r)
smaller than the upper bound of the range y. We can then simply print out all
the a+ i’s from index l to r.

The boundaries l and r can be obtained as follows:

1 Compare x with the split values by traversing down the BST until we reach
the parent of two leaf nodes. Set l to be the index of the left child if x is
smaller than its value; otherwise set it the index of the right child.

2 Similarly, compare y with the split values by traversing down the BST until
we reach the parent of two leaf nodes. Set r to be the index of the right child
if y is larger than its value; otherwise set it to the index of the left child.

3 Return the ai’s between a[l] and a[r].

(e) The BST can be constructed as follows:

1 Sort all ais in ascending order.

2 Add 2k−N “virtual” nodes of values larger than aN−1 to the end of the array;

3 Construct the perfect BST according to Part 10c with the 2k real numbers.

Finding the closest neighbors:

1 The procedure is the same as before.

2 If the traversal go to the leaf node in the tree, there are two cases to deal with.
If the leaf node stores a0, a1, . . . , aN−1, then return the leaf node. Otherwise,
return aN−1.

Take Figure 3 as an example. If the search goes to any node between 1 and N ,
then directly return the node. If it goes to N +1 to 2k, then just return node N.

11. (a) See Fig. 4.

(b) See Fig. 5.

4

Figure 3: An illustration for closest neighbor search for general N .

124

62

53

78

17

28

39

3

5454

20

31

53

78

17

28

3

20

31

62

53

78

17

28

39

22

124

31

20

54

3

39

28

17

78

53

62

124

412728393542031 625378

2222

31

20

54

3

39

28

17

78

53

62

124

31

20

54

3

39

28

17

78

53

62

2727

41

17

16

15

14

10

9

8

7

6

5

4

3

2

0

1

39

54

20

31

3

54

20

31

124 22

13

12

11

20

3131

54

20

31

17

28

39

3 3 3

54

20

31

78

17

28

39

54

39

3

54

20

31

20

31

28

39

3

54

20

31

Figure 4: Hash Table for linear probing

5

39

3

54

20

31

124

62

28

31

22

124

62

53

78

17

5353

78

17

28

39

3

54

20

31

62

78

17

28

39

3

54

20

31

203

2

0

1

4

41

13

12

11

412728393542031 62537817

16

15

14

10

9

8

7

6

5

27

22

124

62

53

78

17

28

39

3

54

27

22

124

62

53

78

17

28

39

3

54

20

31

54

20

31

20

31

3

54

20

3131

124 22

20

31

54

78

17

28

39

3

54

20

31

53

78

17

28

39

3

54

20

31

39

3

54

20

31

39

3

28

17

28

39

3

54

20

31

Figure 5: Hash Table for double hashing

6

