
COMP 2012H: Honors OOP and Data Structures
Fall 2015

PA3: Matrix ADT
Deadline: 11:59pm, Sunday, October 25, 2015

1 Matrix ADT

In this assignment, you are asked to implement a Matrix ADT. The ADT is writ-
ten in a .h file, while the functions are fully implementated in a .cpp file.

The index of our matrix starts from 0, and hence an m×n matrix Am×n is
written as (m,n ≥ 0)

Am×n =

a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1
...

...
. . .

...
am−1,0 am−1,1 · · · am−1,n−1

 ,

where ai,j are double numbers, and m,n ≥ 0.
The Matrix class definition is as follows. You should implement your matrix

as a dynamic 2-D array and provide codes for all its member functions. You MUST
keep all the shown functions, but may add your private data members and/or mem-
ber functions if you want.

class Matrix { // Matrix class
public:
explicit Matrix(int rows = 0, int cols = 0);

// constructor
Matrix(const Matrix & mt); // copy constructor
˜Matrix(); // destructor
int rows() const; // return the number of rows of the matrix
int cols() const; // return the number of columns of the matrix
double & el(int i, int j) const; // access (i, j)th element
void assign(const Matrix & op); // copy values from op
Matrix mul(const Matrix & op) const; // multiplication of matrices
Matrix transpose() const; // the transpose of matrix
Matrix inverse() const; // the inverse of matrix

// Add your public member functions, if any, in the following
private:

double **elm; // matrix elements
int r; // number of rows
int c; // number of columns

// Add your private data members and private member functions,
// if any, in the following
};

1

The member functions are explained as follows.

1. Constructor:

// Constructor: Initialize the matrix to be a rows x cols matrix.
// rows >= 0; cols >= 0
// default is an empty 0 x 0 matrix
// No need to initialize matrix elements
Matrix::Matrix(int rows, int cols) {

2. Copy constructor:

// Copy constructor
Matrix::Matrix(const Matrix & mt) {

3. Destructor.

// Destructor for the matrix
Matrix::˜Matrix() {

4. Inspector function for row:

// Return the number of rows of the matrix
int Matrix::rows() const {

5. Inspector function for column:

// Return the number of columns of the matrix
int Matrix::cols() const {

6. Element access:

// Return the (i, j)th element of the matrix
// Precondition: i and j are valid ranges
double & Matrix::el(int i, int j) const {

7. Assignment function, to copy all elements in matrix op. That is, a call of
A.assign(B) will copy element by element from matrix B to A.

Note that you need to resize the matrix before copying so that the new matrix
is of the same dimension as op.

// Assign and copy all the elements of matrix op to the matrix.
// Resize matrix (allocate space) if necessary
void Matrix::assign(const Matrix & op) {

2

8. Matrix multiplication, where a call of A.mul(B) returns a new matrix
which is the product of matrices A and B.

Matrix multiplication is defined as follows. The product of two matrices
Am×p (with entries aij) and Bp×n (with entries bij) is a Cm×n matrix whose
entries cij is given by

cij =
p−1∑
k=0

aikbkj , ∀0 ≤ i < m, 0 ≤ j < n.

// Return a new matrix which is the product of
// this matrix and matrix op.
// Precondition: valid multiplication with correct rows and columns
Matrix Matrix::mul(const Matrix & op) const {

9. Transpose operation, which returns a new matrix which is the transpose of
this matrix.

Matrix Bn×m is the transpose of matrix Am×n iff

bji = aij , ∀0 ≤ i < m, 0 ≤ j < n.

// Return a new matrix which is the transpose of the matrix.
Matrix Matrix::transpose() const {

10. Inverse: Matrix B is the inverse of a square matrix A iff AB = I . If A does
not have an inverse, please return a zero matrix. (For a discussion on how to
inverse a matrix, you may consult http://www.mathwords.com/i/inverse_of_a_matrix.htm)
Hint: The Adjoint method described in the webpage is easier to implement
than the others.

// Return a new matrix which is the inverse of the matrix.
// Return a zero matrix if inverse does not exist
Matrix Matrix::inverse() const {

2 What to be turned in

Provide us your header file Matrix.h and the implementation file Matrix.cpp.
We will include your Matrix.h and write our own tester to test-run your pro-
gram. However, if you have a tester file, please provide to us as well.

3 Extra Credits (Maximum 10%)

There are many other matrix operations, such as eigenvectors, eigen-values, solu-
tion of Ax = b, etc. Implement what you know about matrix operations to gain
extra credits here (at the discretion of the grader). Please explain the extras you
have done in your README.

3

