
COMP2611 Fall 2015 Instruction: Language of the Computer

1

5. Addressing Modes

COMP2611 Fall 2015 Instruction: Language of the Computer

2 MIPS Addressing Modes

 Addressing takes care of where to find

 data

 instruction

 We have seen, so far three addressing modes of MIPS (to find data):

1. Immediate addressing: provides fast access of small constants

 e.g. addi $t0, $t0, 1023

2. Register addressing: the operand is available in a register

 e.g. add $t0, $t0, $t1

3. Base addressing: the operand is the sum of a (base) register and
a displacement

 e.g. lw $t0, 1024($t1)

 MIPS architecture provides two more ways of addressing (to find
instruction)

Immediate Addressing

 One operand is embedded inside the encoded instruction

 16-bit immediate is a two’s complement number

 -215 <= value <= 215-1

 Example: addi or similar

COMP2611 Fall 2015 Instruction: Language of the Computer

3

Register Addressing

 The operands are in registers

 Takes n bits to address 2n registers

 Example: add, sub, and, sll or similar

COMP2611 Fall 2015 Instruction: Language of the Computer

4

Base Addressing

 One operand is in main memory

 Its address is the sum of the immediate and the value in register $rs

 16-bit immediate is a two’s complement number

 Example: lw $s1, 16($s0)

COMP2611 Fall 2015 Instruction: Language of the Computer

5

Where is the next instruction?

 Address of current instruction is in PC

 Sequential execution

 Address of the next instruction is
PC+4

 Conditional branch? Un-conditional
branch?

 Re-visit memory space

 Text segment starts 0x00400000

 Each instruction occupies 4 bytes
(1 word)

 Last 2 digits of instruction address
is always 00 (we can make it
implicit and use ‘word address’)

COMP2611 Fall 2015 Instruction: Language of the Computer

6

Stack

Dynamic data

Static data

Text

Reserved

$sp  7fff fffc hex

$gp  1000 8000 hex

 1000 0000 hex

pc  0040 0000 hex

0

COMP2611 Fall 2015 Instruction: Language of the Computer

7 Addressing in Conditional Branches

We know that

 Conditional branch instructions (e.g., beq, bne) use I-format

 I-format can only specify 16-bit addresses

How to branch?

 PC-relative addressing

 A branch offset is added to (PC+4) to obtain address to branch to

• Branch offset is described in number of words.

 Branching within 215 words before or after the current instruction
is possible

 This is good enough since conditional branches tend to branch to
a nearby instruction

Notes:

While an instruction is being executed, the PC always points to the current instruction, i.e.,
address of current instruction

Example: Branch Offset in Machine Language

Address Instruction

40000008 addi $s0, $s0, 1

4000000C beq $zero, $s0, label

40000010 addi $s0, $s0, 1

40000014 addi $s0, $s0, 1

40000018 label: addi $s0, $s0, 1

4000001C addi $s0, $s0, 1

40000020 etc…

 Machine code to beq is
0x1005002, which means 2

instructions from the next
instruction

PC = 0x4000000C

PC+4 = 0x40000010

Add 4*2 = 0x00000008

Target = 0x40000018

COMP2611 Fall 2015 Instruction: Language of the Computer

8

op rs rt const or address

00010 00000 00101 0000000000000010

PC-relative Addressing

 The value in the immediate field is interpreted as an offset of the next
instruction (PC+4 of current instruction)

COMP2611 Fall 2015 Instruction: Language of the Computer

9

COMP2611 Fall 2015 Instruction: Language of the Computer

10 J-type Instruction Format

J-type or J-format

 Used by instructions such as j (‘jump’) and jal (‘jump and link’)

 e.g. j L1 # go to instruction labeled L1

26 bits 6 bits

address op

Addressing in Un-conditional Jumps

 Direct Addressing: the address is ‘the immediate’. 32-bit address
cannot be embedded in a 32-bit instruction

 Psuedo-direct Addressing: 26 bits of the address is embedded as
the immediate

Example: j Label

COMP2611 Fall 2015 Instruction: Language of the Computer

11

Pseudo-direct Addressing (2)

COMP2611 Fall 2015 Instruction: Language of the Computer

12

COMP2611 Fall 2015 Instruction: Language of the Computer

13 Branching Far Away

 From 16-bit word address to 26-bit word address:

 replace this

 beq $s0, $s1, L1 # L1 = 16-bit address

 with this

 bne $s0, $s1, L2 # L2 = 16-bit address

 j L1 # L1 = 26-bit address

L2:

Attention:

The tradeoff is longer program execution time

 i.e. need to execute two instructions rather than just one

COMP2611 Fall 2015 Instruction: Language of the Computer

14 Stretching the Maximum Possible Distance

Because,

 All MIPS instructions are 4 bytes long

So,

 A branch target or offset can refer to number of words instead of
number of bytes

 essentially stretch the maximum possible branching distance by 4x

Questions:

 What is the range a ‘j’ and ‘jal’ can jump to?

 Within 256MB

 What if we want to jump beyond 256MB?

COMP2611 Fall 2015 Instruction: Language of the Computer

15 Stretching the Maximum Possible Distance

0x0 0000000

…

0x0 FFFFFFF

0x1 0000000

…

0x1 FFFFFFF

0x2 0000000

…

0x2 FFFFFFF

…

0x7 0000000

…

0x7 FFFFFFF

J L1

L1: …

COMP2611 Fall 2015 Instruction: Language of the Computer

16 Stretching the Maximum Possible Distance

0x0 0000000

…

0x0 FFFFFFF

0x1 0000000

…

0x1 FFFFFFF

0x2 0000000

…

0x2 FFFFFFF

…

0x7 0000000

…

0x7 FFFFFFF

J L1

L1: …

What if the Jump target is more than 256 MB away?

Jump Register

 Set the register content as the target address

 Then simply jr

COMP2611 Fall 2015 Instruction: Language of the Computer

17

COMP2611 Fall 2015 Instruction: Language of the Computer

18 Summary of MIPS Addressing Modes

1. Immediate addressing

 The operand is a constant within the instruction itself

2. Register addressing

 The operand is a register

3. Base addressing or displacement addressing

 The operand is at the memory location with address

= (register) + constant

4. PC-relative addressing

 The address is = (PC) + 4 + constant

5. Pseudodirect addressing

 The jump address is a constant in the instruction concatenated
with the upper 4 bits of the PC

COMP2611 Fall 2015 Instruction: Language of the Computer

19 Summary of MIPS Addressing Modes (cont’d)

R e g i s t e r

1 . I m m e d i a t e a d d r e s s i n g

2 . R e g i s t e r a d d r e s s i n g

3 . B a s e a d d r e s s i n g

4 . P C - r e l a t i v e a d d r e s s i n g

5 . P s e u d o d i r e c t a d d r e s s i n g

o p r s r t

o p r s r t

o p r s r t

o p

o p

r s r t

A d d r e s s

A d d r e s s

A d d r e s s

r d . . . f u n c t

I m m e d i a t e

P C

P C

 +

 +

B y t e H a l f w o r d Word

R e g i s t e r s

M e m o r y

M e m o r y

Word

Word

R e g i s t e r

M e m o r y

COMP2611 Fall 2015 Instruction: Language of the Computer

20 Summary of MIPS Architecture Revealed So Far

 MIPS operands:

 32 registers (32 bits each)

 230 memory word locations (32 bits each)

 MIPS instructions:

 Arithmetic: add, sub, addi

 Data transfer: lw, sw, lb, sb, lui

•lb and sb are similar to lw and sw, but for transferring bytes

instead of words

 Conditional branch: beq, bne, slt, slti

 Unconditional jump: j, jr, jal

 MIPS instruction formats:

 R-format, I-format, J-format

COMP2611 Fall 2015 Instruction: Language of the Computer

21

6. Other Issues

(optional)

COMP2611 Fall 2015 Instruction: Language of the Computer

22 Alternatives to the MIPS Approach

 MIPS is an example of RISC

 Reduced Instruction Set Computer

 Each instruction does one simple thing

 Most existing processors are RISC since it is more promising

 Another approach is CISC

 Complex Instruction Set Computer

 One instruction may do multiple things, e.g. Intel’s instruction set

RISC CISC

Number of instructions in a program () more (+) less

Time to execute the program (+) usually less () usually more

Hardware design (+) simple () complex

(+) means advantage, () means disadvantage

COMP2611 Fall 2015 Instruction: Language of the Computer

23 Comparing RISC and CISC in Details

RISC CISC

Through quantitative measurements, choose
only the most useful instructions and
addressing modes.

Choose instructions and addressing modes that
make the translation of high-level languages to
assembly language simpler.

With few instructions and addressing modes,
we can directly execute them in hardware.

Since we can have many instructions and
addressing modes, we need a microcode (or
microprogrammed control) to execute them
in hardware.

A lot of chip space can be left for a large
number of registers and cache memory.

We can have only few registers and small
cache memory.

Compilers are more difficult to write. Compilers are easier to write.

Assembly language programs are more difficult
to write.

Assembly language programs are easier to
write.

COMP2611 Fall 2015 Instruction: Language of the Computer

24 Pseudoinstructions

Pseudoinstructions

 Assembly language instructions that do not have corresponding
machine instructions (i.e., they need not be implemented directly in
hardware)

Why Pseudoinstructions?

 Their appearance in assembly language simplifies programming and
translation, giving MIPS a richer set of assembly language instructions
than those implemented by the hardware.

Cost of supporting Pesudoinstructions

 The only cost is reserving one register, $at, for use by the assembler

COMP2611 Fall 2015 Instruction: Language of the Computer

25 Examples of Pseudoinstructions

 move:

 move $t0, $t1 # $t0 gets value of $t1

 The assembler converts this pseudoinstruction into the machine
language equivalent of the following instruction:

 add $t0, $zero, $t1 # $t0 gets 0 + value of $t1

 Others:

 blt (‘branch on less than’)

 ble (‘branch on less than or equal’)

 bgt (‘branch on greater than’)

 bge (‘branch on greater than or equal’)

COMP2611 Fall 2015 Instruction: Language of the Computer

26 Key Concepts to Remember

 The stored-program concept underlies today’s digital computers

 An instruction specifies an operation and its corresponding operand(s)

 All MIPS instructions are 32 bits in length

 To simplify the instruction set architecture

 But, multiple instruction formats are supported

 Registers are fast temporary storage inside the processor

 Four design principles for ISA

 Simplicity favors regularity

 Smaller is faster

 Make common case fast

 Good design demands good compromises

COMP2611 Fall 2015 Instruction: Language of the Computer

27 Key Concepts to Remember (cont’d)

 Program counter is a special register

 Pointing to the current instruction to be fetched and executed

 Branch/jump instructions often require branch address calculation

 MIPS supports different addressing modes

1. Register

2. Displacement

3. Immediate

4. PC-relative

5. Pseudodirect

 Pseudoinstructions extend the MIPS instruction set

 To facilitate program development

 RISC and CISC are two very different design philosophies

