
ADT: Lists, Stacks and Queues

N:6, 7, 8, 11

H.O. #8

Fall 2015

Gary Chan

Outline

COMP2012H (List, Stack and Queue) 2

 List as an ADT

 An array-based implementation of lists

 Linked lists with pointer implementation

 Stacks

 Operations and implementations

 Applications: decimal to binary conversion, parenthesis matching, infix to

postfix, postfix computation, expression tree, etc.

 Queues

 Operations and implementations

 Bin-sort and radix sort

Consider Every Day Lists

COMP2012H (List, Stack and Queue) 3

 Groceries to be purchased

 Job to-do list

 List of assignments for a course

 Dean's list

 Can you name some others??

Properties of Lists

COMP2012H (List, Stack and Queue) 4

 Can have a single element

 Can have no elements

 There can be lists of lists

 We will look at the list as an abstract data type

 Homogeneous data type (i.e., no mixed types on int, double, string, etc.)

 Sequential elements (elements are indexed from 0 to size-1)

Basic Operations

COMP2012H (List, Stack and Queue) 5

 Construct an empty list

 Determine whether or not empty

 Insert an element into the list

 Delete an element from the list

 Traverse (iterate through) the list to

 Modify

 Output

 Search for a specific value

 Copy or save

 Rearrange

Designing a List Class

COMP2012H (List, Stack and Queue) 6

 Should contain at least the following function members

 Constructor

 empty(): whether the list is empty or not

 insert(): insert an element into the list

 delete(): delete an element from the list

 display(): display all the elements in the list

 Implementation involves

 Defining data members

 Defining function members from design phase

Array-Based Implementation of Lists

COMP2012H (List, Stack and Queue) 7

 An array is a viable choice for storing list elements

 Element are sequential

 It is a commonly available data type

 Algorithm development is easy

 Normally sequential orderings of list elements match with array

elements

a[0] a[1] a[2] … a[n-1] a[n] … a[CAPACITY-1]

Array:

List: a1 , a2 , a3 , … , an

Implementing Operations

COMP2012H (List, Stack and Queue) 8

 Constructor

 Static array allocated at compile time

 Empty

 Check if size == 0

 Traverse

 Use a loop from 0th element to size – 1

Implementing Operations

COMP2012H (List, Stack and Queue) 9

 Insert

 Shift elements to right of insertion point

 Delete

 Shift elements back

Also adjust size

up or down

23 25 34 48 61 79 82 89 91 99 ? … ?

23 25 34 48 56 61 79 82 89 91 99 … ?

23 25 34 48 56 61 79 82 89 91 99 … ?

23 34 48 56 61 79 82 89 91 99 ? … ?

List Class Example (Array Implementation)

COMP2012H (List, Stack and Queue) 10

 Declaration file (List.h)

 Note use of typedef mechanism outside the class

 This typedef means that it is a list of int

 Definition and implementation (List.cpp)

 Note considerable steps required for insert() and erase() functions

 Program to test the class (listtester.cpp)

List Class with Static Array

COMP2012H (List, Stack and Queue) 11

 Must deal with issue of declaration of the type and the size
CAPACITY

 Use typedef mechanism to define type for the WHOLE

program

 For specific implementation of our class we simply fill in desired

type for Some_Specific_Type

typedef Some_Specific_Type ElementType

ElementType array[CAPACITY];

List Class with Static Array: Problems

COMP2012H (List, Stack and Queue) 12

 capacity: Stuck with "one size fits all"

 Too large: Could be wasting space

 Too small: Could run out of space

 Thus we consider creating a List class with dynamically-

allocated array

 The capacity can be changed at object construction

Dynamic-Allocation for List Class

COMP2012H (List, Stack and Queue) 13

 Now possible to specify different sized lists

aList1 mySize 0

myCapacity 1024

myArrayPtr

aList2 mySize 0

myCapacity 500

myArrayPtr

0 1 2 3 4 . . . 1023

0 1 2 3 4 . . . 499

cin >> maxListSize;

List aList1, aList3(maxListSize);

List aList2 (500);

Need to Implement Destructor

COMP2012H (List, Stack and Queue) 14

 When class object goes out of scope the pointer to the

dynamically allocated memory is not reclaimed automatically

 The destructor reclaims dynamically allocated memory

aList mySize 0

myCapacity 1024

myArrayPtr

0 1 2 3 4 . . . 1023

memory leakage!

Copy Constructor

 Called for construction statement like foo a=b;

 a and b are of the same class objects foo

 Note that this is the same as foo a(b); and hence we overload the

constructor this way

 For the data members not covered in the copy constructor, their copy

constructors will be called (primitive type are simply memory copy)

 Compiler provides a default copy constructor if you do not have
one

 Copy each member of the original object into the corresponding member
of the new object (i.e., calling the copy constructor of each data member)

 Pointers are not traversed and hence a and b may point to the same
heap location

 Can cause serious problems when data members contain pointers to
dynamically allocated memory  this can cause memory problem when
objects are copied into and returned from functions as parameters

COMP2012H (List, Stack and Queue) 15

The need of deep copy

 Need to make a deep copy of an object
 When object is initialized by another in a declaration (List lst(l2);)

 When argument is passed as value parameter in functions (foo(List lst);)

 When function returns a local object (List lst = bar();)

 When temporary storage of object is needed (List tmp=aList;)

 We want to make duplications on the heap that an object points
to

 Instead of doing shallow copy

COMP2012H (List, Stack and Queue) 16

Copy Constructor Statement
 We need to declare copy constructor:

 As a member function

class foo{

public:

foo(const foo & f); // must have const

…};

…

foo g;

and then call

foo f(g);

or

foo f = g; // foo f = foo(g) and then call it as f

 Note that the statement

int i;

i(2); // NOT a copy constructor

is not valid as the compiler will take i(2) as a function call instead of setting
i=2. Use int i(2); instead

17COMP2012H (List, Stack and Queue)

Copy Constructor with Deep Copy

COMP2012H (List, Stack and Queue) 18

 Deep copy: enables pass-by-value and return-by-value
between objects

 Used to copy original object’s values into new object to be passed to a
function or returned from a function

 If copy is not made deep (shallow copy), aliasing problem

List aListCopy(aList);

aList mySize 3

myCapacity 10

myArrayPtr

aListCopy mySize 3

myCapacity 10

myArrayPtr

11 22 33

0 1 2 3 4 5 6 7 8 9

Conversion Constructor

 The statement foo f = bar or foo f(bar), where bar

is of bar_class class (NOT of foo class), constructs an

object by converting an object of a different class

 It calls the conversion constructor

 You need to define a conversion constructor to tell compiler how

to deal with the above, using

 foo(bar_class b);

 For example, you can convert a real number to a complex

number by statement like:

Complex c(0.2) or Complex c = 0.2;

You need to define Complex(double d); in your class definition.

COMP2012H (List, Stack and Queue) 19

Assignment Operator

COMP2012H (List, Stack and Queue) 20

 Default assignment operator makes shallow copy

 Can cause memory leak if we have two valid lists equating with

each other (see below):

aListCopy = aList;

aList mySize 3

myCapacity 10

myArrayPtr

aListCopy mySize 3

myCapacity 10

myArrayPtr

11 22 33

0 1 2 3 4 5 6 7 8 9

marooned!

0 1 2 3 4 . . .

Notes on Class Design

COMP2012H (List, Stack and Queue) 21

 constructor.cpp

 Illustration on when and how to make constructor calls

 If a class allocates memory at run time using new, then it should

provide

 A destructor

 An assignment operator

 A copy constructor

Dynamic-Allocation for List Class

COMP2012H (List, Stack and Queue) 22

 Changes required in data members
 Eliminate const declaration for CAPACITY

 Add variable data member to store capacity specified by client program

 Change array data member to a pointer

 Constructor requires considerable change

 Little or no changes required for
 empty()

 display()

 erase()

 insert()

 DList.h, DList.cpp and dlisttester.cpp

 Another more advanced implementation with exception handling and
template (incomplete as it is without copy constructor and assignment
operator)
 llist.h, llist.cpp, xcept.h

Futher Improvements to Our List Class

COMP2012H (List, Stack and Queue) 23

 Problem 1: Array used has fixed capacity

 If a larger array is needed during insert(), we should allocate a larger

array  Allocate (e.g., to double the size), copy smaller array to the new

one

 To conserve memory, if there are very few elements (say less than 25%

full after erase()), we can new a smaller array (e.g., half the size), copy

the content over and deallocate

 Or use linked list

 Problem 2: Class bound to one type at a time

 Creating multiple List classes with differing types is difficult

 Use class template (later)

Inefficiency of Array-Implemented List

COMP2012H (List, Stack and Queue) 24

 insert() and erase() functions inefficient for dynamic lists

 Those sizes that change frequently

 Those with many insertions and deletions

 We look for an alternative implementation

 chained nodes using linked list

 Linked list

 Remove requirement that list elements be stored in consecutive location

 But then need a "link" that connects each element to its successor

Linked List Nodes

COMP2012H (List, Stack and Queue) 25

 ChainNode class
 data

 stores an element of type T

 next

 stores link/pointer to next element

 when there is no next element, NULL value

 Chain class
 Make use of ChainNode

 The nodes are indexed from 1 onwards

9 17 22 26 34

/
first

data

next

ChainNode

Chain

Using C++ Pointers and Classes

COMP2012H (List, Stack and Queue) 26

 To Implement linked list:

 Allows Chain to directly access private members

 ChainNode is open only to Chain access

 Using accessor and mutator, or making the data members public, give access to all other
classes

 The definition of a ChainNode is recursive (or self-referential)

 The next member is defined as a pointer to a ChainNode

 cnode.h, chain.h, chain.cpp

 Exception handling xcept.h

template <class T> class Chain;

template <class T>

class ChainNode {

friend Chain<T>;

private:

T data;

ChainNode<T> *link;

};

Linked Lists Operations

COMP2012H (List, Stack and Queue) 27

 Construction
first = null;

 Traverse

 Initialize a variable ptr to point to first node

 Continue until ptr == null

 Process data where ptr points

 Set ptr = ptr->next

9 17 22 26 34

/
first

ptr

Operations: Insertion

COMP2012H (List, Stack and Queue) 28

 Insert(int k, const T& x)

 Insert a node with data x after the kth node, i.e., becoming the (k+1)th element after the insertion

 0<= k <= size,

 k == 0 means that insertion at the head

 k == size means insertion at the end

 To insert a node with data 20 after 17

 Need address of item before point of insertion

 p points to the node containing 17

 Get a new node pointed to by y and store 20 in it

 Set the next pointer of this new node equal to the next pointer in its predecessor, thus making it point to its
successor

 Reset the next pointer of its predecessor to point to this new node

9 17 22 26 34

/
first

p

20

y

Operations: Insertion

COMP2012H (List, Stack and Queue) 29

 Insertion also works at end of list

 pointer member of new node set to null

 Need to worry the special case: Insertion at the beginning of

the list

 because p is a ChainNode<T> pointer and cannot point to first

 y sets to first

 first sets to value of y

 In all cases, no shifting of list elements is required!

Operations: Deletion

COMP2012H (List, Stack and Queue) 30

 Delete(int k, T& x)
 Delete the kth node and return its data to x, where 1 <= k <= size

 Delete node containing 22 from list
 Suppose p points to the node to be deleted

 q points to its predecessor (the node with data17)

 Do a bypass operation:
 Set the next pointer in the predecessor to point to the successor of the node to

be deleted (the 26)

 Deallocate the node being deleted (the 22).

 Need to worry the special case: Delete the first element

9 17 26 34

/
first

q

22

p delete the node!

Linked Lists: Advantages

COMP2012H (List, Stack and Queue) 31

 Access any item as long as external link to first item is

maintained

 Insert a new item without shifting

 Delete an existing item without shifting

 Can expand/contract as necessary

Linked Lists Overhead

COMP2012H (List, Stack and Queue) 32

 Overhead of links:

 used only internally, pure overhead

 Must provide

 destructor

 copy constructor and assignment operation

 Access of nth item now is less efficient

 must go through first element, and then second, and then third, etc.

 No longer have direct access to each element of the list

 Many sorting algorithms need efficient direct access

Variant of Linked Lists: A Clever Trick

 Note the loop inefficiencies in insert, delete and search

operations

 Insert: the checking of the special case of head insertion

 Delete: the checking of special case of head deletion

 Search: Need to be careful of the unsuccessful case when the pointer will

traverse to NULL

 To simplify these operations, we may keep a header node. The

header node is a dummy node that does not have to store any

data.

 An empty list contains only the header node.

 In a non-empty list, nodes storing data follow the header node.

 Saving on comparison and handling special cases in insert, delete and

search

COMP2012H (List, Stack and Queue) 33

Circular Linked List

COMP2012H (List, Stack and Queue) 34

Efficient Search on a Circular Linked List with

a Header Node (Stamp x at the Header)

COMP2012H (List, Stack and Queue) 35

template<class T>

int CircularList<T>::Search(const T& x) const

{// Locate x in a circular list with head node.

ChainNode<T> *current = first->link;

int index = 1; // index of current

first->data = x; // put x in head node

// search for x

while (current->data != x) {

current = current->link;

index++;

}

// are we at head?

return ((current == first) ? 0 : index);

}

Function Members for Linked-List Implementation

COMP2012H (List, Stack and Queue) 36

 Copy constructor for deep copy

 By default, when a copy is made of a List object, it only gets the head pointer

 Copy constructor will make a new linked list of nodes to which copy will point

 Assignment operation (=) also needs to be done similarly

9 17 22 26 34

/
first

5mySize

aList

9 17 22 26 34

/
first

5mySize

aListCopy

Linked Implementation of Sparse Polynomials

 Consider a polynomial of degree n

 Can be represented by an array

 For a sparse polynomial this is not efficient

COMP2012H (List, Stack and Queue) 37

myDegree 5

0 1 2 3 4 5 6 7 8 9

myCoeffs 5 7 0 -8 0 4 0 0 0 0

myDegree 99

0 1 2 3 4 5 6 7 8 9 … 95 96 97 98 99

myCoeffs 5 0 0 0 0 0 0 0 0 0 … 0 0 0 0 1

Linked Implementation of Sparse Polynomials

 We could represent a polynomial by an array of ordered pairs

of linked nodes { (coef, exponent) … }

COMP2012H (List, Stack and Queue) 38

myDegree 5

0 1 2 3

myTerms 5 0 7 1 -8 3 4 5

myDegree 99

0 1

myTerms 5 0 1 99

Linked Implementation of Sparse Polynomials

 Linked list of these ordered pairs provides an appropriate solution

 Now whether sparse or well populated, the polynomial is represented

efficiently

 Polynomial class (Polynomial.h)

 Type parameter CoefType

 Term and Node are inner private classes for internal use and access only

 Used to create internal data structure of a linked node (for internal access

only)

COMP2012H (List, Stack and Queue) 39

0 0
myTerms

5 0

next

7 1

next

-8 3

next

4 5

/

5myDegree

next

dummy/header/

sentinel
Node

Term

Polynomial

Generalized Lists

 Examples so far have had atomic elements

 The nodes are not themselves lists

 Consider a linked list of strings

 The strings themselves can be linked lists of characters

COMP2012H (List, Stack and Queue) 40

2

A L /

4 /

F R E D /

Stacks

Introduction to Stacks

COMP2012H (List, Stack and Queue) 42

 Consider a pile of books

 New item is always placed on the top of the pile

 Retrieve an item only from the top

 We seek a way to represent and manipulate

this in a computer program – this is a stack

 A stack is a last-in-first-out (LIFO) data

structure

 Adding an item

 Referred to as pushing it onto the stack

 Removing an item

 Referred to as popping it from the stack

A Stack

COMP2012H (List, Stack and Queue) 43

 Definition:

 An ordered collection of data items

 Can be accessed at only one end (the top)

 Operations:

 construct a stack (usually empty)

 check if it is empty

 Push: add an element to the top

 Top: examine/peep the top element

 Pop: remove the top element (usually no input parameter and return type)

Selecting Storage Structure

COMP2012H (List, Stack and Queue) 44

 A better approach is to let position 0 be the bottom of the stack

 An integer to indicate the top of the stack (Stack.h)

[7] ?

[6] ?

[5] 77

[4] 121

[3] 64

[2] 234

[1] 51

[0] 64

[7] ?

[6] 95

[5] 77

[4] 121

[3] 64

[2] 234

[1] 51

[0] 29

[7] 80

[6] 95

[5] 77

[4] 121

[3] 64

[2] 234

[1] 51

[0] 29

[7] ?

[6] 95

[5] 77

[4] 121

[3] 64

[2] 234

[1] 51

[0] 29

Push 95 Push 80 Pop

myTop =

myTop =

myTop =

myTop =

Implementing Operations

COMP2012H (List, Stack and Queue) 45

 Constructor

 Compiler will handle allocation of memory

 Empty

 Check if value of myTop == -1

 Push (if myArray not full)

 Increment myTop by 1

 Store value in myArray[myTop]

 Top

 If stack not empty, return myArray[myTop]

 Pop

 If array not empty, decrement myTop

 Stack.h, Stack.cpp and driver.cpp

Example Program

COMP2012H (List, Stack and Queue) 46

 Consider a program to do base conversion

of a number (ten to two)

 26 = (11010)2

 It assumes existence of a Stack class to

accomplish this

 Demonstrates push, pop, and top

 Push the remainder onto a stack and pop it up

one by one

 Can be written easily using recursion

 n2b.cpp

 Stack.h, Stack.cpp and

BaseConversion.cpp

2 26

2 13 … 0

2 6 … 1

2 3 … 0

2 1 … 1

0 … 1

Stack Applications: Parenthesis Matching (Run)

COMP2012H (List, Stack and Queue) 47

cssu5:> a.out

Type an expression of length at most 100

(a+b)-4

The pairs of matching parentheses in

(a+b)-4

are

1 5

cssu5:> a.out

Type an expression of length at most 100

((a+b)*c+d)+e)

The pairs of matching parentheses in

((a+b)*c+d)+e)

are

2 6

1 11

No match for right parenthesis at 14

cssu5:> a.out

Type an expression of length at most 100

(((a+b)

The pairs of matching parentheses in

(((a+b)

are

3 7

No match for left parenthesis at 2

No match for left parenthesis at 1

Stack Applications: Parenthesis Matching

 Match the left and right parentheses in a character string

 Scan the input string character by character from left to right.

Positions are numbered from 1 onwards

 Push the position of the opening (or left) parenthesis into the stack

 If closing (or right) parenthesis is encountered, it is matched to the left

parenthesis at the top of the stack:

 pop the stack; and

 cout the matched parenthesis positions

 Error occurs upon

 pop error  “No match for right parenthesis”

 Non-empty stack at the end of the operations  “No match for left

parenthesis”

 paren.cpp

COMP2012H (List, Stack and Queue) 48

Application of Stacks: Infix to postfix

COMP2012H (List, Stack and Queue) 49

 Consider the arithmetic statement in the assignment statement:

x = a * b + c

 This is "infix" notation: the operators are between the operands

RPN or Postfix Notation

COMP2012H (List, Stack and Queue) 50

 Reverse Polish Notation (RPN) = Postfix notation

 Most compilers convert an expression in infix notation to postfix

 The operators are written after the operands

 So “a * b + c” becomes “a b * c +”

 Easier for compiler to work on loading and operation of variables

 Advantage: expressions can be written without parentheses

Postfix and Prefix Examples

COMP2012H (List, Stack and Queue) 51

Infix RPN (Postfix) Prefix

A + B A B + + A B

A * B + C A B * C + + * A B C

A * (B + C) A B C + * * A + B C

A - (B - (C - D)) A B C D--- -A-B-C D

A - B - C - D A B-C-D- ---A B C D

Prefix : Operators come

before the operands

Rules of Conversion

 Always write out operand

 Always push ‘(‘ into the stack

 An operator can only be pushed into a stack if it is of higher

priority than the one below

 *,/ is higher than +, -

 If not, keep popping the stack until it is so, hit a ‘(‘, or the stack is empty

 Upon the operator ‘)’ , always pop the stack till ‘(‘

COMP2012H (List, Stack and Queue) 52

Stack Algorithm (postfix.cpp)

COMP2012H (List, Stack and Queue) 53

1. Initialize an empty stack of operators

2. While no error and not end of expression

a) Get next input "token" from infix expression, where a token is a
constant/variable/arithmetic operator/parenthesis

b) switch(token):

i. "(" : push onto stack

ii. ")" : pop the stack and display the element until "(" occurs, do not display the
“(“

iii. operator:
if the operator has higher priority than the top of stack

push token onto the stack
else

pop the stack and display it
if the top is not “(“, repeat comparison of the operator with the top of

the stack

iv. operand: display it

3. End of infix reached: pop and display stack items until empty

Evaluating RPN Expressions (Similar to Compiler

Operations)

COMP2012H (List, Stack and Queue) 54

"By hand" (Underlining technique):

1. Scan the expression from left

to right to find an operator

2. Locate ("underline") the last

two preceding operands and

combine them using this

operator

3. Repeat until the end of the

expression is reached

Example:

2 3 4 + 5 6 - - *

 2 3 4 + 5 6 - - *

 2 7 5 6 - - *

 2 7 5 6 - - *

 2 7 -1 - *

 2 7 -1 - *

 2 8 *

 2 8 *

 16

Evaluating RPN Expressions

COMP2012H (List, Stack and Queue) 55

By using a stack algorithm

1. Initialize an empty stack

2. Repeat the following until the end of the expression is

encountered

a) Get the next token (const, var, operator) in the expression

b) Operand – push onto stack

Operator – do the following

i. Pop 2 values from stack

ii. Apply operator to the two values

iii. Push resulting value back onto stack

3. When end of expression encountered, value of expression is

the only number left in stack; otherwise the expression is in

error.

Note: if only 1 value on stack,

this is a pop error, i.e., an

invalid RPN expression

Evaluation of Postfix

COMP2012H (List, Stack and Queue) 56

2 4 * 9 5 + -

4 * 9 5 + -

* 9 5 + -

5 + -

+ -

(end of strings)

-

8

4

2

2

5

9

8

9

8

9 5 + -

14

8

-6

-6

Push 2 onto the stack

Value of expression is on top of the stack

Push 4 onto the stack

Pop 4 and 2 from the stack , multiply, and push the result 8 back

Push 9 onto the stack

Push 5 onto the stack

Pop 5 and 9 from the stack, add, and push the result 14 back

Pop 14 and 8 from the stack, subtract, and push the result -6 back

Queues

Introduction to Queues

COMP2012H (List, Stack and Queue) 58

 A queue is a waiting line – seen in daily life

 A line of people waiting for a bank teller

 A line of cars at a toll booth

 "This is the captain, we're 5th in line for takeoff"

The Queue as an ADT

COMP2012H (List, Stack and Queue) 59

 A queue is a sequence of data elements

 In the sequence

 Items can be removed only at the front

 Items can be added only at the other end, the back

 Basic operations

 Construct a queue

 Check if empty

 Enqueue (add element to back)

 Front (retrieve value of element from front)

 Dequeue (remove element from front)

Array-Based Queue Class

COMP2012H (List, Stack and Queue) 60

 Consider an array in which to store a queue

 Additional variables needed

 myFront and myBack

4 8 6

0 1 2 3 4 …

myArray

myFront myBack

… 4 8 6

0 1 2 3 4 …

myFront myBack

… 4 8 6 2

0 1 2 3 4 …

myFront myBack

…

dequeue(); enqueue(2);

Array-Based Queue Class

COMP2012H (List, Stack and Queue) 61

 Problems

 We quickly "walk off the end" of the array

 Shift array elements? Inefficient!

 A more efficient solution: Circular array/queue

 myBack always points to an empty slot to put the next item in

 myBack cannot point to a valid item because we need a way to distinguish an empty queue (if
we have an empty queue, where should myBack point to?)

 An empty queue is indicated by myBack == myFront

 A full queue is indicated by (myBack+1) % queue_size == myFront

 Because of the above, the capacity of the queue is one LESS the actual array size

70

80

50

0

1

2

3

4

myFront

myBack

enqueue(70);

enqueue(80);

enqueue(50);

Array-Based Queue Class

COMP2012H (List, Stack and Queue) 62

 Using a static array (Queue.h and Queue.cpp)

 QUEUE_CAPACITY specified

 Enqueue increments myBack using mod operator, checks for full queue

 Dequeue increments myFront using mod operator, checks for empty queue

 Instead of myBack, a more clever implementation is to keep n, the
number of valid elements in the queue

 n == 0 means empty queue

 n == myCapacity means full queue

 In this case, you can use the full array.

 Similar problems as list and stack

 Fixed size array can be specified either too large or too small

 Dynamic array design allows sizing of array for multiple situations

 Need a destructor, copy constructor and assignment (=) operator

 myCapacity determined at run time

Linked Queues

COMP2012H (List, Stack and Queue) 63

 Even with dynamic allocation of queue size

 Array size is still fixed

 Cannot be adjusted during run of program

 Could use linked list to store queue elements

 Can grow and shrink to fit the situation

 No need for upper bound (myCapacity)

9 17 22 26 34

/

myFront myBack

Node

data

next

Queue

Linked Queues

COMP2012H (List, Stack and Queue) 64

 Constructor initializes

 myFront = null;

 myBack = null;

 Front

 return myFront->data

 Dequeue

 Delete first node (watch for empty queue)

 Enqueue

 Insert node at end of list (watch for empty queue)

 LQueue.h, LQueue.cpp, driver.cpp

Queue Application: Bin (or Bucket) Sort

 The nodes are placed into bins, each bin contains nodes with the same
score

 Then we combine the bins to create a sorted chain

 Note that it does not change the relative order of nodes that have
the same score, the so-called stable sort.

COMP2012H (List, Stack and Queue) 65

Radix Sort

 Sort, linear time, m integers in the range 0 through rd -1, where

r is a constant (the radix).

 We decompose the numbers using the radix r, and then sort by

digits

 For example, with r = 10, we can use binsort with the number of

bin equal to r to sort the digit one by one in increasing

significance

COMP2012H (List, Stack and Queue) 66

Radix Sort Illustrated (with r = 10 and d = 3)

COMP2012H (List, Stack and Queue) 67

COMP2012H (List, Stack and Queue) 68

Radix Sort: Another Example

Think of each element in your input, A1,A2. . .,Ai. . ,An-1,An as being composed of

several digits. Such as:

Element A = DdDd-1.. Di…D2D1

So, 30485

d = 5 D1=5

D2=8

D3=4

D4=0

D5=3

345

d = 5

D1=5

D2=4

D3=3

D4=0

D5=0

What does this mean? Our elements have a maximum size, defined

by d.

COMP2012H (List, Stack and Queue) 69

Basic Idea

That is: 256, 234, 090, 304

256, 234, 090, 304

256, 234, 090, 304

Sort by least-significant digit first, then next digit, and so on.

First (least

significant) digit

Second digit

Third (most

significant) digit

COMP2012H (List, Stack and Queue) 70

Example. Number composed of 3 digits

(digit is [0 to 9])

First pass sorting by first significant digit.

COMP2012H (List, Stack and Queue) 71

Example: r=10 (base 10)

Now, make a second pass, visiting the elements in the

order they appear after the first pass.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

COMP2012H (List, Stack and Queue) 72

Last Pass

Now, make a last pass, visiting the elements in the

order they appear after the second pass.

Look! Sorted!

COMP2012H (List, Stack and Queue) 73

We’ll use a queue

data-structure to

help us out.

COMP2012H (List, Stack and Queue) 74

A1,A2,A3Ai.An-1,An

Array input

For each A[i] =DdDd-1.. Di…D2D1

find A[i]’s appropriate queue

0

1

2

3

4

5

6

7

8

9

Set up 10 empty queue for each

possible value of a digit [0-9]

Queues

Look at first digit D1

r=10 (radix)

COMP2012H (List, Stack and Queue) 75

Finding digit Di From Key

 We want to find the ith digit in our key A

A = DdDd-1.. Di…D2D1

mod and div are integer operators

Let D = 10i

Then Di = (A mod D) div (D/10)

Get Digit Di

Example. A=30487 we want D3

i =3, D = 1000

A mod 1000 = 487 (first)

487 div (D/10) (second)

487 div (100) = 4 result!

COMP2012H (List, Stack and Queue) 76

A1,A2,A3Ai.An-1,An

Array input

For each A[i] =DdDd-1.. Di…D2D1

t = (A[i] mod D) div (D/10)

Q[t]->enqueue(A[i])

0

1

2

3

4

5

6

7

8

9

Set up 10 empty queue for each

possible value of a digit [0-9]

Queues

A

A

A

A A A

A

A

A

Look at first digit D1

COMP2012H (List, Stack and Queue) 77

0

1

2

3

4

5

6

7

8

9

Set up 10 empty queue for each

possible value of a digit [0-9]

Queues

A

A

A

A A A

A

A

Now de-queue items

in order and place

back in the array.

(This is sorting by Digit D1)

A

A A A A A.

COMP2012H (List, Stack and Queue) 78

A1,A2,A3Ai.An-1,An

Array input

Repeat procedure

for all digits Di in our

keys.

In the end, the array will

be sorted!

Number of Steps in binsort

 Sort m integers

 For example, sort m=1,000 integers in the range of 0 to106-1

 We use binsort with range r:

 Initialization of array takes r steps;

 putting items into the array takes m steps;

 and reading out from the array takes another m+r steps

 The total sort complexity is then (2m + 2r) , which can be much larger

than m if r is large

COMP2012H (List, Stack and Queue) 79

Optimal r

 1000 integers in the range of 0 and 106 − 1 are to be sorted

using radix sort.

 We assume that each step takes the same amount of execution

or computation time.

COMP2012H (List, Stack and Queue) 80

Using r=106 and r = 1,000

 For r = 106, we can put them into bins and write them out in one pass
 106 initiation on bins

 1,000 steps to distribute the numbers into bins

 106 + 1000 to collect the numbers

 A total steps of 2,002,000

 Using r = 1,000
 Sort using the least 3 significant decimal digits of each number and use a bin-

range equal to 1,000

 Initialization of bins: 1,000 steps

 1,000 steps to distribute the numbers into bins

 1,000 steps to sweep the 1000 bins

 1,000 de-queuing steps to collect the numbers

 A total of 3,000 steps (excluding the initialization steps)

 Repeat the above one more time using the next three decimal digits of each
number, which takes another 3,000 steps as given above

 Total steps = 1000 + 3000 + 3000 = 7,000

COMP2012H (List, Stack and Queue) 81

How about r=100 and 10?

 With r = 100

 Three bin sorts on pairs of decimal digits are performed

 100 queue-initialization steps

 Each of the sorting stage takes 1,000 distribution steps, and 100+1000
readout. This totals 2,100 steps

 With 3 passes, total steps = 100 + 3 x (2100) = 6,400

 With r = 10

 Six bin sorts on 1 decimal digit at each pass are performed

 10 queue-initialization steps

 Each of the sorting stage takes 1000+(10+1000) = 2,010 steps

 Total steps = 10 + 6x(2010) = 12,070.

 Therefore, radix sort with r = 100 is the most efficient

 Strike a good balance between the number of passes in binsort and the
cost of initialization/readout

COMP2012H (List, Stack and Queue) 82

